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Abstract 

 

The seismic inversion problem may allow us to obtain the 
petrophysical properties of underground layers from 
seismic reflection data. The knowledge of these 
characteristics is of vital importance for the identification of 
regions with hydrocarbons. Different approaches using 
Machine Learning algorithms have been proposed to 
address this issue, such as feed-forward neural networks, 
Support Vector Machine (SVM), Convolutional Neural 
Networks (CNN), Recurrent Neural Networks (RNN), and 
Temporal Convolutional Networks (TCN). This work 
proposes an encoder-decoder network architecture to 
overcome this problem, with a convolutional neural 
network as encoder and an LSTM network as decoder. The 
proposed method was tested to estimate the density, P-
impedance, and sonic well-logs using the seismic data 
from the offshore Netherlands F3 block. 

 

Introduction 

 

The process of obtaining petrophysical properties of the 
subsurface structures and their spatial variability is called 
Reservoir Characterization (RC). Usually, the process 
begins after a seismic and geological survey, using data 
from well-logs, core analysis, and seismic reflection. This 
process allows us to predict the subsurface fluid flow, and 
reservoir performance to optimize the scavenging 
efficiency Yu et al. (2011). Several works have been 
proposed to solve this problem, but its difficulty and 
intrinsic uncertainties do not allow the generation of a 
systematic method that can be used outside of certain 
study areas. Machine learning algorithms (ML) are well 
known for their large capacity to generalize, and they show 
promise in the RC field, as has been shown in recent works 
allowing us to use seismic data to infer several types of 
well-logs. Alfarraj et al. (2018) use a Recurrent Neural 
network to estimate density and p-impedance. Biswas et 
al. (2019) use a Convolutional Neural Network (CNN), and 
a physical guide to estimate p-wave, s-wave, and density. 
Das et al. (2018) use a CNN to estimate seismic 
impedance. 

 

Recurrent Neural Networks 

Unlike traditional feedforward networks, recurrent neural 
networks (RNN) have recurrent connections to save 
information from recent events and contextualize the 
information. Commonly used in language models, natural 
language processing, speaking, audio, and video Shinde 
et al.). However, these kinds of networks have a larger 
number of parameters, which makes them harder to train. 
Additionally, with very large context intervals, the RNN 
suffers from Exploding Gradient e Vanish Gradient Bengio 
et al. (1994). To overcome this issue, different 
architectures have been proposed, such as Gate 
Recurrent Unit (GRU) Cho et al. (2014) and the Long-Short 
Term Memory (LSTM) Hochreiter et al. (1997). An LSTM 
module (Figure 1) has three gates that manipulate the 

internal state 𝑐𝑡 and the output 𝑦𝑡 

 

 
Figure 1 – LSTM repetition model and its internal gates. 

 
The first gate (traced-square), called Forget Gate (𝑓𝑡), 
chooses the information to be discarded. The output of the 
previous memory block (𝑦𝑡−1) is taken and concatenated 

with the input of the cell (𝑥𝑡) and then passed through a 

sigmoid function (𝜎()). The second gate (dotted dark-

squared) is called Learning/Input Gated (𝑖𝑡). Whose role is 
to decide what new information will be stored in the cell 
state, taking the output of the previous cell and the input 
and passing it through by a sigmoid function and, at the 
same time, through a hyperbolic tangent function. The third 
gate (dotted-square), called Output Gate (𝑂𝑡), also uses 

the input of the cell (𝑥𝑡), the internal state of the previous 

cell (𝑦𝑡−1), and a sigmoid function. Finally, the new output 
(𝑦𝑡) is updated using the output cell and its internal state 

(𝑐𝑡). The equations in their compacted form SANTOS 
(2019) can be described, as 
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𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [𝑦𝑡−1, 𝑥𝑡] + 𝑏𝑓)

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [𝑦𝑡−1, 𝑥𝑡] + 𝑏𝑖)

ℎ𝑡 = tanh(𝑊𝑐 ∙ [𝑦𝑡−1, 𝑥𝑡] + 𝑏𝐶)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ ℎ𝑡

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [𝑦𝑡−1, 𝑥𝑡] + 𝑏𝑜)

𝑦𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡)

 (1) 

 

Where 𝑊𝑓 , 𝑊𝑖 , 𝑊𝑐 , 𝑊𝑜 and 𝑏𝑓, 𝑏𝑖 , 𝑏𝑐 , 𝑏𝑜 are the weights 

matrices and bias vector parameters, respectively, that are 
learned during training  

 

Convolutional Neural Networks 

 

Convolutional Neural Networks (CNN) are networks that 
use a spatial relationship. A general description of a CNN 
is given by ROSA (2018) 

 

𝑥1 → 𝜓1(𝑥1; 𝑊1) → 𝑥2 → 𝜓2(𝑥2; 𝑊2) → ⋯ → 𝑥𝑛

→ 𝜓𝑛(𝑥𝑛; 𝑊𝑛)  
(2) 

 

where the input 𝑥𝑚 goes through the layers 𝜓𝑚 until it 

reaches the final one 𝜓𝑛, the functions 𝜓𝑚(. ) are usually 
linear functions followed by nonlinear functions, and the 
𝑊𝑚 are the adjustable parameters of the layers. The 
output of each layer is the input of the next. Different layers 
are commonly used. 

Convolutional layer: this layer applies different types of 
filters to the input. Filters are an array of weights 𝑊 with 

size (𝜔 × 𝜔 × 𝑑) that interpolate a d-dimensional feature 
map to a k-dimensional feature map with an input size of 
(𝑛 × 𝑛 × 𝑑), centered in (𝑖, 𝑗). The response of the f-th filter 
is given by 

 

𝑥𝑖,𝑗,𝑟
𝑙+1 = ∑ ∑ ∑ (𝑊𝑣,𝑞,𝑐,𝑟

𝑙 × 𝑥𝑣,𝑞,𝑐
𝑙 )

𝑖.𝑗

𝜔−1

𝑣=0

𝜔−1

𝑞=0

𝑑

𝑐=1

+ 𝛽  (3) 

 

where 𝛽 are the trainable weights, and 𝑙 is the number of 

layers. The output for each convolutional layer for all the 𝑘 

filters in the entire spatial arrangement (𝑖, 𝑗) is  

 

(
𝑚 − 𝜔 + 2𝑧𝑝

𝑠
+ 1) × (

𝑛 − 𝜔 + 2𝑧𝑝

𝑠
+ 1) × 𝑘 − dim (4) 

 

Nonlinear layer: the vanish gradient problem appears 
where the magnitude of the layer`s learning gradient has 
been reduced until its loss. To address this problem, a 
nonlinear activation function is usually used. One of the 
most used functions is the Rectified Linear Unit ReLU Nair 
et al.). The function replaces the negative elements of the 
feature map with zero and is described as 

 

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥)  (5) 

 

Pooling layer: generate a low-resolution version of the 
input to obtain its main elements. In order to prevent the 
model from being susceptible to physical changes while 
preserving the discrimination. Goodfellow et al. (2016), this 
layer is similar to the convolutional layer but uses pooling 
functions as the average or the maximum value. 

Fully connected layer. This layer implies that all neurons in 
the previous layer are connected to all neurons in the next 
layer. Finally the loss layer. This layer contains a loss 
function, which is minimized using back propagation while 
the algorithm is trained. The kind of function used depends 
on the type of problem. Here, because it is a regression 
problem, we use the Mean Squared Error (MSE), which 
computes the mean of square errors between the predicted 
and the actual values and is expressed as  

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌1 − 𝑌�̂�)

𝑛

𝑖=1

2

   
(6) 

 

Method 

Pre-processing 

 

Firstly, it is necessary to define the volume around the well. 

Use 𝑥 as the number of inlines / cross-lines as the length 
of each side of a square, and T as the range depth/time. 
Next, knowing the depth is needed to synchronize the 
seismic data and the well-log. Finally, normalize the well`s 
volume between 1 and -1. On the other hand, for the well-
log preprocess, subsampling, and filtering, the 
subsampling was made using Inverse Distance Weighting 
(IDW) Shepard) and a low-pass Butterworth filter. 

 

Proposed Model 

 

The proposed architecture is an encoder-decoder (Figure 
2), and its input is a seismic trace matrix (sub-volume 
inlines) with x features columns and T z-lines rows. These 
inlines are used one at a time. The encoder is composed 
of two convolutional layers activated by the ReLU function; 
both have 64 filters and a kernel size of 3, followed by a 
MaxPooling layer. The first convolutional layer’s input and 
the output have skipped connections and are concatenated 
with the encoder output. The bottleneck (in light blue) 
comprises a Flattening and a RepeatVector. The 
RepeatVector repeats the input T times. The decoder has 
one LSTM with 200 neurons with a dropout layer, 

deactivating 5% of the units. Followed by a fully connected 

layer with 100 neurons, and finally, the output has a 
regression layer composed of one neuron. The neuron is 
responsible for presenting the inferred Well-Log. 
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Figure 2 – Proposed encoder-decoder architecture. 

 

Experimental Evaluation 

 

The seismic data used are from the offshore F3-block in 

the Netherlands TerraNubis (1987), with 386.93 𝐾𝑚2, 651 

inlines, and 951 cross-lines. The dataset is composed of 4 
wells (F02-1, F03-2, F03-4, and F06-1), as shown in Figure 
3. This dataset has 11 different well logs, including Density, 
Sonic, P-impedance. 

 

 
Figure 3 – Offshore F3-block, Netherlands. 

 

The Dataset 

 

The sub-volume used has 11 × 11 traces (𝑥 = 11) 
centered at the well and the working depth (𝑇) is between 

600 − 1300 𝑚𝑠. Since the model is trained with the inlines. 

The database has 44 samples, of which 33 were used to 

perform the training process (3 wells) and 11 samples for 

testing. Validation uses 21% of the train samples. The sub-
sampling of the well-log was performed by interpolating the 
midpoint every 4 𝑚𝑠. The filtering was performed using the 
Scipy community (2023) library, a low-pass Butterworth 

filter with order 3, power of 1, and a critical frequency of 4. 
To measure the performance of the model, the Pearson 
correlation is used Pearson (1895). 

The operator defines the relation between the covariance 

and the standard deviation of two random variables (𝑋, 𝑌) 

 

𝜌𝑋,𝑌 = 𝑐𝑜𝑟𝑟(𝑋, 𝑌) =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
=

𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

𝜎𝑋𝜎𝑌
 (7) 

 

Experimental Evaluation 

To test the performance of the proposed model. A 4-fold 

validation is performed. Every fold uses 3 wells for the 
training and one for the test (green), as shown in Table 1. 

 

 Poço 1 Poço 2 Poço 3 Poço 4 

Test 1 F06-1 F03-4 F03-2 F02-1 

Test 2 F06-1 F03-4 F03-2 F02-1 

Test 3 F06-1 F03-4 F03-2 F02-1 

Test 4 F06-1 F03-4 F03-2 F02-1 

Table 1 – Test K-fold. 
 

The experiment was repeated 10 times, and the results are 
average for all experiments. Table 2 shows a summary of 
the results (in percentage) and a comparison with those 
presented by Alfarraj et al. (2018). There is shown the 
correlation of the Density, P-impedance, and sonic well-
log. As can be seen, the proposed model has achieved a 
relatively high correlation overcoming their results without 
using augmentation data techniques. It should be noted 
that the estimation of petrophysical properties is not an 
easy task. However, better scores could be obtained using 
a larger database or more complex networks. 

 

                Property 

     Model 
Density P-impedance Sonic 

(Alfarraj and 
AlRegib, 2018) 

70 72 - 

Proposed Model 74 ± 6 76 ± 6 74 ± 6 

Table 2 – Correlation coefficient (%) for Density, P-
impedance, and Sonic logs. 

 

Figure 4 shows the predicted (blue) and measured 
(orange) density well-log for the best k-fold found using the 
proposed model. As can be seen, the model infers low 
frequencies better than high frequencies but has problems 
with difficulties with pronounced changes. 

 

Conclusions 

 

This paper proposes an encoder-decoder model to 
estimate well-log properties from seismic data using CNN 
and RNN, respectively. The model was validated using 4-
fold validation and tested with three different properties: 
density, sonic, and P-impedance. The results show that the 
model has a good inference capacity standing out in low 
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frequencies, beating results found in the literature. The 
response of the model could, perhaps, be improved by 
using a larger dataset. 

 

 
Figure 4 – Density well-log for a) F02-1, b) F03-2, c) F03-
4, and d) F06-1. 
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