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Abstract 

We present a criterion to evaluate the reliability of the 
velocity model obtained from traveltime tomographic 
inversion with Tikhonov regularization. The criterion is 
based on SVD filtering and on Barbieri's criterion. The 
proposed approach was able to improve the model in the 
RMS error sense, and was applied to a 2-D synthetic 
model based on the Dom João Field, Recôncavo Basin. 
Regularized inversion was iteratively performed by 
conjugate gradient method and regularization parameter in 
each step was selected by L-curve. Two levels of Gaussian 
noise were added to input data to simulate real conditions. 

 

Introduction 

Traveltime tomography is an imaging technique used to 
reconstruct velocity distribution from measurements of 
transmitted waves, in this case traveltimes related to paths 
that connect sources to receivers. Traveltime tomography 
has a key role in oil industry since it is a high-resolution tool 
capable of locating, characterizing and monitoring content 
evolution of hydrocarbon reservoirs (Lazaratos & Marion, 
1997; Messud et al., 2017). Since the wave path, that is, 
the ray, is a function of the slowness (velocity reciprocal), 
the relation between traveltime and slowness is nonlinear. 
Also, field data is usually affected by noise and subsurface 
data coverage is usually low. Thus, solutions are very 
sensitive to small perturbations in the data, and 
tomographic inversion is said to be ill-conditioned 
(Tarantola, 2005). 

Such problems can be numerically stabilized by 
regularization, which introduces some expectation about 
the solution (Menke, 2018). A widely used is the Tikhonov 
regularization. By applying a derivative operator to the 
solution, the objective function to be minimized includes 
both the data prediction error and the module of the 
smoothed solution in Euclidian length, weighted by an 
unknown regularization factor.  

The idea is to iteratively solve the inverse problem with the 
appropriate parameter at each step. Several techniques to 
choose or to determine this parameter have been 
developed (Golub et al., 1979; Morozov, 1984; Hansen, 
1992). And some of these approaches to select the 
regularization factor were applied to traveltime tomography 

(Bube & Langan, 1994; Yao & Roberts, 1999; Soupios et 
al., 2001). 

Regularization produces a stable reduced-norm solution, 
but it does not solve the original problem. Assuming that it 
is not possible to obtain additional a priori information 
about the solution, at least one can evaluate particularities 
of the solution from the kernel matrix. The most common 
methods use the covariance matrix or data-resolution and 
model-resolution matrices (Menke, 2018). These matrices 
were applied to seismic tomography problems by Zhang & 
Thurber (2007) and Xia et al. (2008).  

In a similar way, Barbieri (1974) suggested a heuristic 
criterion to identify artifacts introduced by the inversion 
algorithm. The criterion solves the inverse problem for a 
complementary model defined in such a way that, added 
to the original, it produces a solution with a constant value, 
if the inverse problem is exact. In terms of information, 
solution and the complementary solution are equivalent. 
Since the tomographic problem is, in practice, usually 
underdetermined, infinite solutions exist. Based on some 
norm or procedure, we select only one solution from the 
whole space of solutions. If any artifact is not present in two 
distinct solutions, one can presume it does not belong to 
the space of solutions (Gordon, 1974). By identifying the 
location and size of these artifacts, one can exploit this 
information to upgrade the solution. 

 

Theory 

Ray tracing 

The ray represents the propagating wave energy path in a 
medium. In traveltime tomography, the ray is the 
propagating seismic-wave path in an acoustic or elastic 
medium. In an isotropic and nonhomogeneous medium, 
the acoustic path length along the ray between a source 
located at point 𝑆 and a receiver at point 𝑅 is given by 

𝐼 = ∫ 𝑛 𝑑𝑙
𝑅

𝑆
, 

where 𝑛 is the refraction index distribution and 𝑑𝑙 is an 
infinitesimal arc length along the ray (Born & Wolf, 1999). 
Since Fermat's principle - which establishes that wave 
energy propagates along a path for which the traveltime 
has a minimum value -  determines the path taken by a ray, 
one can apply the calculus of variations in 𝐼 to derive Euler 
Equation, also known as ray equation in the context of 
geometrical optics, 

ⅆ

ⅆ𝑙
(𝑛

ⅆ𝐫

ⅆ𝑙
) = ∇𝑛, 

whose solution, within a certain regular neighborhood, is 
the path taken by the ray with the shortest acoustic length 
in an isotropic and nonhomogeneous medium. The vector 

𝐫 is the position of any point along the ray, ∇𝑛 is the 
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gradient of 𝑛 and 𝑑𝐫/𝑑𝑙 is the unit vector tangent to that 
point. 

We consider the propagation of a seismic wave in terms of 
a ray, which is a high frequency approximation of the wave 
phenomenon, i.e., it considers negligible wavelength 
compared to scattering points. Ray equation-based ray 
tracing algorithms are useful as long as the refraction index 
varies smoothly.  

The ray tracing algorithm used in the present paper is 
based on the algorithm of Andersen & Kak (1982), which 
is capable of modeling realistic medium in a geological 
sense. Their algorithm is based on the second-order Taylor 
approximation of the position of a point along the ray, 𝐫(𝑙 +
Δ𝑙), where the second derivative is obtained by the Euler 
equation: 

(∇𝑛 ⋅
ⅆ𝐫

ⅆ𝑙
)

ⅆ𝐫

ⅆ𝑙
+ 𝑛

ⅆ2𝐫

ⅆ𝑙2 = ∇𝑛. 

For a 2-D medium, the algorithm is given by the 
decomposition of 𝐫(𝑙 + Δ𝑙) into the horizontal (𝑥-axis) and 

vertical (𝑧-axis) directions: 

𝑥𝑘+1 = 𝑥𝑘 + cos 𝛼𝑘 ∆𝑙 +
1

2𝑠𝑘
(𝑠𝑘,𝑥 − 𝑑𝑘 cos 𝛼𝑘)∆𝑙2, 

and 

𝑧𝑘+1 = 𝑧𝑘 + sin 𝛼𝑘 ∆𝑙 +
1

2𝑠𝑘
(𝑠𝑘,𝑧 − 𝑑𝑘 sin 𝛼𝑘)∆𝑙2. 

𝑠𝐾 is the slowness at point 𝑃𝑘 = (𝑥𝑘 , 𝑧𝑘); 𝑠𝑘,𝑥 and 𝑠𝑘,𝑧 are 

the partial derivatives of 𝑠𝑘 with respect to 𝑥 and 𝑧, 

respectively; 𝛼𝑘 is the angle between the 𝑥-axis and the 

tangent to the ray at 𝑃𝑘; 𝑑𝑘 = 𝑠𝑘,𝑥 cos 𝛼𝑘 + 𝑠𝑘,𝑧 sin 𝛼𝑘; ∆𝑙 is 

the distance between 𝑃𝑘 and the next point 𝑃𝑘+1, and 𝑠 =
𝑛 𝑐⁄ . 𝑐 is the seismic velocity in a reference medium.  

Given a slowness distribution, a point in the medium and 
an angle of incidence the ray path can be traced. Ray 
tracing is a critical part of tomographic reconstructions due 
to its high computational cost. Also, finding the angle of 
incidence that links source to receiver takes some time for 
complex models. 

 

Forward modeling 

The traveltime related to 𝑖-th ray, 𝑡𝑖, is given by the line 

integral of slowness 𝑠 along the ray path (Scales, 1987). 

Let  𝑡𝑖 = 𝑔𝑖(𝑠). One can linearize it by the first-order Taylor 
approximation around an initial slowness model 𝑠0. For a 

set of 𝑀 rays within the medium parameterized by a grid 

composed of 𝑁 squares, the linearized problem is reduced 
to 

Δ𝐭 = 𝐆Δ𝐬, 

where 

𝐺𝑖𝑗 =
∂gi

∂sj
|

𝐬=𝐬0

, 

for 𝑖 = 1, … , 𝑀 and 𝑗 = 1, … , 𝑁. The elements of the 

sensitivity matrix 𝐆, obtained by ray tracing algorithm, 

represent the path length taken by the 𝑖-th ray in the 𝑗-th 
square of the initial slowness model.  

Thus, the nonlinear problem is replaced by a system of 
linear equations between perturbations both in traveltimes, 
Δ𝐭, and in the initial slowness model, Δ𝐬. 

 

Regularized inversion 

The exact solution Δ𝐬 = 𝐆−1Δ𝐭 cannot be obtained 

because 𝐆 is usually not full rank, even when it is a square 
matrix. Tikhonov regularization stabilizes the system 
numerically by applying a derivative operator 𝐃𝑛 to the 

solution, where 𝑛 is the order of the derivative. One can 
choose the first-order regularization if the model is 
expected to be flat; the second-order, if it is expected to be 
smooth, i.e., not rough (Menke, 2018).  

The objective function to be minimized is the sum of the 
amount of data prediction error and the amount of 
smoothed solution in Euclidian length, which leads to 

[𝐆T𝐆 + λ𝐃n
T𝐃n]Δ𝐬 = 𝐆TΔ𝐭, 

where λ is the regularization factor that controls data error 
and model smoothing. Greater λ produces smoother 
solutions and large data errors; the opposite occurs for 
smaller λ. 

Determining an appropriate value for 𝜆 is crucial since it 
influences the solution. We use L-curve (Hansen, 1992), a 
graphical tool that evaluate the log-log plot of ordered pairs 
(‖Δ𝐭 − 𝐆Δ𝐬(λ)‖2, ‖𝐃nΔ𝐬(λ)‖2) in the Euclidian plane for a 

pre-set 𝜆 values. Its name derives from its shape (see 

Figure 1), and it is expected that the appropriate 𝜆 
corresponds to the point of maximum curvature in L-curve, 
since it indicates a balance between smoothness of 
solution and data fitting. 

 

 

 
 
Figure 1 – An example of the parametric L-curve. The 

factor λ increases from the top of curve to the right and the 
appropriate value corresponds to the point of maximum 
curvature. 

 

 

Method 

Let 𝐬true be the exact solution for the linear system 𝐆𝐬 = 𝐭, 
for a known data vector 𝐭. Let 𝐰 be a vector of same 

dimension as 𝐬, with elements 𝑤𝑗 = 𝜔, where 𝜔 is constant 
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for all 𝑗. Let  𝐬c be a complementary solution of 𝐬true such 

that 

𝐬true + 𝐬c = 𝐰. 

It is intuitive to obtain the complementary system as 

𝐆𝐬c = 𝐆𝐰 − 𝐭, 

where the right-hand side is called complementary data, 𝐭c, 
and it is considered to be known. If we sum the 

complementary estimated solution, 𝐬c,est , with the original 

estimated solution, 𝐬est, both obtained by the same 
inversion algorithm, we obtain the pseudo-constant vector  

𝐰est = 𝐬est + 𝐬c,est. 

For an exact inversion, 𝐰est = 𝐰. Otherwise, 𝑤𝑗 ≠  ω 

indicates that the 𝑗-th element of the model is less reliable. 
Such a conclusion arises from the expectation that 
obtaining the complementary solution would not provide 
more knowledge than the original one since data and its 
complementary are equivalent in terms of information 
(Gordon, 1974).  

As traveltime tomography is an ill-conditioned problem, the 
related complementary system will be as well and will 
demand a kind of regularization, for instance, Tikhonov 
regularization (Bejarano & Bassrei, 2016). The 
complementary regularized system is given by  

[𝐆T𝐆 + λ𝐃n
T𝐃n]Δ𝐬c,est = 𝐆TΔ𝐭c. 

Let 𝐫 be the unknown residuals defined so that 

𝐬true = 𝐫 + 𝐬est. 

One can estimate 𝐫 as follows. Let 

𝐩 = 𝐰 − 𝐰est 

be a pseudo-null vector since it is expected that nonzero 
elements represent the medium squares where the 

inversion behaved unexpectedly. Assuming that 𝐬c,est ≈ 𝐬c, 

then 𝐩 ≈ 𝐫, and, therefore,  

𝐬imp = 𝐩 + 𝐬est ≈ 𝐬true, 

where 𝐬imp is the improved model by the proposed 
criterion. 

One can represent the 𝑁-dimension vector 𝐩 as the 

pseudo-null 𝑁𝑧 × 𝑁𝑥 matrix 𝐏, i.e., each element of 𝐏 is 
related to a square in the gridded medium. If one identifies 
each square of the medium by the ordered pair (𝑝, 𝑞) in the 

Euclidian plane, then the element 𝑃𝑞,𝑝 of the matrix belongs 

to square (𝑝, 𝑞) and it is equivalent to the 𝑗-th element of 𝐩, 

where 𝑗 = (𝑞 − 1)𝑁𝑥 + 𝑝, for 𝑝 = 1, … , 𝑁𝑥 and  𝑞 = 1, … , 𝑁𝑧.  

Starting from the reasonable conjecture that regions of the 
medium where inversion was unsuccessful must be 
randomly located, it is possible to enhance such elements 
of 𝐏 by attenuating every coherent signal. We suggest the 
power method (Golub & Loan, 1996) for it, by suppressing 
the first eigenimages since the corresponding singular 
values are much larger than the others, i.e., they retain 
laterally coherent information (Freire & Ulrych, 1988).  

 

Results 

We used a 2-D synthetic model (Figure 2) based on a 
reservoir from Dom João Field, Recôncavo Basin, in a 
crosswell acquisition geometry with 141 sources and 140 
receivers evenly spaced, totalizing 19740 rays. Figure 3 
shows traveltime diagram. The model covers an 215 × 410 
m area and was parameterized by 3526 blocks of 

dimension 5 × 5 m, i.e., 43 squares horizontally and 82 
vertically. 

 

 
 
Figure 2 - True velocity model with 3526 blocks, based on 

real situation from Dom João Field, Recôncavo Basin. 

 

 
 
Figure 3 - Graphical representation of the traveltime of 

each one of the 19740 rays. Smaller numbers for sources 
and receivers correspond to smaller depths. 

 

One must establish some measure of quality for any 
recovered model 𝐬 in respect to true model. We use 
estimator  

ε = 100% 
‖𝐬true−𝐬‖

2

‖𝐬true‖2
, 

i.e., percentage RMS error of 𝐬 with respect to 𝐬true. 
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To better represent a real data condition, Gaussian noise 

was added to data. We denoted it as 𝜇, the percentage 
RMS error of data with respect to noise-free data, and we 
choose two different levels: 𝜇 = 1% and 𝜇 = 5%. 

The inversion was performed by the conjugate gradient 
method optimized for sparse matrices (Scales, 1987), up 
to 8 iterations and it was regularized by the second-order 
derivative operator in both horizontal and vertical 
directions.  

The regularization factor was selected by two approaches. 
The first one chose each iteration model as the model with 
minimum 𝜀. The second approach selects the optimum 
regularization factor by the L-curve (Hansen, 1992). Since 
true model is unknown for real data, the former is a 
validation aproach for the latter. Table 1 shows both 
results. For all simulations, the processing time until 
convergence was up to 240 s and required no more than 5 
iterations. The lowest number of required iterations 
occurred for 𝜇 = 5%, which is expected since very noisy 
data demand greater regularization. 

 

𝜇 (%) 
Inversion 

Proposed criteria 
Minimum ε L-curve 

1 3.78 4.69 3.93 

5 4.72 5.42 4.92 

Table 1 – Estimator ε (in %) for the obtained models. The 

second and third columns are for inversion algorithm. The 
last column is for improved models by the proposed 
criterion. The decrease of ε for both noise levels added to 
data is significant even when compared to the reference 
model (minimum ε). These results are visually endorsed in 
Figure 6. 

 

Figure 4 shows the ratio of consecutive singular values of 
the pseudo-null matrices. For the case of data with high 

noise (𝜇 = 5%), dominance was verified and the 
corresponding eigenimage was suppressed. The 
procedure of improving the model was performed with the 
entire content of the pseudo-null matrix for the case µ =
1%. 

 

 
 
Figure 4 - Evolution of the first seven ratios between 

consecutive singular values of pseudo-null matrix 𝐏. Only 

for µ = 5% there is high dominant coherence, where the 
first singular value is 18 times greater than the second one, 

and the corresponding eigenimage was suppressed. 

The residual and pseudo-null matrices are placed side by 
side in Figure 5. For the case µ = 1%, 𝐏 clearly maps 
almost all regions of malfunctions in the inversion 

algorithm. For µ = 5%, one can notice that some linear 
pattern in 𝐑 seem to hide some random features that 𝐏 
exhibits. Figure 6 confirms that as it shows resolution 
enhance for both noise levels. 

 

 

 

Figure 5 - Residual (𝐑) and pseudo-null matrices (𝐏) 

normalized by their maximum value and in absolute (for 
display purposes only). 𝐑 is the matrix representation of 

residual vector 𝐫 in the same way as it was done for 𝐏. 

Even for very noisy data (µ = 5%) 𝐏 is capable of 
identifying regions of malfunction in the inversion algorithm 
that was hidden in horizontal pattern in 𝐑. 

 

The regularization parameter required in the proposed 
criterion is very close to those ones selected in the 

inversion for µ = 1%, but greater regularization was 

required for µ = 5%. As the latter is an unlikely noise level, 
one can state that the proposed criterion maintains the 
inversion regularization parameter.  
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The last column of Table 1 shows estimator ε for the 
proposed criterion, and it complements the results shown 
in Figures 5 and 6 as it provides a good measure of the 
improvement in the model. Processing time for the 
proposed criterion was up to 30 s. 

 

 
 

 

Figure 6 – Estimated velocity distribution in the inversion 

algorithm (𝒗𝑒𝑠𝑡) and the velocity distribution improved by 

the proposed criterion (𝒗𝑖𝑚𝑝). For both noise levels the 
proposed criterion produced a model with higher 
resolution. 

 

Conclusions 

The proposed algorithm is a computational low-cost, easy-
to-implement method effective for both mapping 
regularized tomographic inversion algorithms malfunctions 
and improving the solution in the RMS error sense, even in 
the presence of a high level of noise in the data. If there 
are dominant singular values, the corresponding 
eigenimages must be suppressed from the pseudo-null 
matrix with the purpose to enhance regularization features 
and to identify algorithm malfunctions. 
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