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Abstract

We performed a numerical study of the influence
of the hyperparameters of the generative adversarial
networks on the learning process in an interpolation
seismic data application. This study was carried
out using a decimated data set as input for the
interpolation process and the results are compared
with the original one, data set without decimation.
From our numerical tests, we have observed that the
batch size and the training/test ratio are not decisive
hyperparameters, and the loss norm L1 produces
sharper resolution when compared to the L2 norm.
In addition, using the size kernel three produced
the best interpolation result, and that large value
for the hyperparameter λ works better than a low
value. Finally, we have found that the more accurate
interpolated data set is associated with small learning
rates.

Introduction

Seismic data interpolation is an important step in seismic
processing when traces are missing in the seismogram
and/or when it requires a dense number of traces from a
sparse seismic acquisition, where the node spacing is in
the order of hundreds of meters. The missing data can
be associated with several causes such as the presence
of obstacles or no-permit areas during the acquisition
and hardware problems with geophones/hydrophones,
(Porsani, 1999; Gülünay, 2003). In addition, due to
economic reasons, data acquisition can be more sparse
than necessary and regular interpolation is needed. This
can be the case of time-lapse seismic projects, in which
successive acquisitions are done at the same location for
monitoring oil reservoirs (Nguyen et al., 2015). In this
situation, it is common that the baseline first acquisition
is performed with a dense quantity of receivers and the
successive acquisitions have fewer receivers, making a
regular interpolation necessary (Johnston, 2013).

Seismic interpolation methods can be arranged into three
basic groups: Wiener-like filter methods based on data
linearity assumptions (Crawley et al., 2005; Porsani,
1999; Naghizadeh and Sacchi, 2009), wave-equation
techniques based on seismic wave propagation (Ronen,
1987; Fomel, 2003) and frequency transform methods

based on the sparsity of data in the Fourier domain (Sacchi
and Ulrych, 1996; Gülünay, 2003). Recently, a new
interpolation methodology based on Machine Learning
(ML) tools has been introduced, see Fang et al. (2021)
using Convolutional Neural Networks (CNN), and Chai et
al. (2020); Kaur et al. (2021) employing the Generative
Adversarial Network (GAN).

In the last decade, there has been an increasing amount
of new studies with applications of ML to geophysical
methods and particularly in the oil and gas industry,
Dramsch (2020); Sircar et al. (2021). Besides, we call
attention to the relevance of ML applied to 2D and 3D
seismic inversion problems (Zhang et al., 2022; Wu and
Lin, 2019). However, in general, applications of ML to
physical problems have to be viewed with caution due to
the large number of hidden free parameters inside the ML
mathematical apparatus (Géron, 2022). In this way, it is
necessary to carefully investigate the ML algorithm and
make tests on its hyperparameters. Our study is posed
inside this research line: we present a numerical study of
the hyperparameters of a GAN-based interpolator, where
we mainly have tested the interpolator over a large range
of hyperparameters.

Seismic data interpolation can be performed for irregular or
regular (or randomly) subsampled data sets. In this study,
we are basically concerned with the second scenario,
where the data set was decimated in a regular way.
However, the main results of our work can be generalized
to the random case. In fact, this paper is a methodological
study, our focus is on ML hyperparameters employed in
the interpolation task. The rest of this manuscript is
organized as follows: the methodology is split into three
parts, the seismic problem used to perform our numerical
experiments, a presentation of the Neural Network used in
the ML, and a concise introduction to the ML interpolator.
The results concern on the numerical exploration around
the tested hyperparameters of the ML interpolator. Finally,
we concluded our work by discussing the outcomes of the
study.

Methodology

Forward seismic modeling

In this work, to carry out our numerical simulation tests,
we used a synthetic data set modeled using a realistic
P-wave velocity model based on a typical Brazilian pre-
salt reservoir (Mojica and Maciel, 2020) and a density
model, built from this velocity model following a polynomial
form of the Gardner law (Operto et al., 2015). The
data set was modeled by a two-dimensional (2D) acoustic
finite-difference modeling (Thorbecke and Draganov, 2011)
using Ricker pulse as a wavelet with a 15 Hz peak
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frequency. A total number of 361 sources were used with
a shot spacing of 50 meters at 10 meters depth. We used
361 receivers placed at 2100 meters depth with a spacing
of 50 meters, and hence we have 361 traces for each shot-
gather. Figure 1 shows an example of a shot-gather from
the modeled data set.
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Figure 1: A 2D shot-gather simulated by an acoustic finite-
difference modeling. The red rectangle is used to illustrate
the interpolator in the numerical tests.

Generative Adversarial Network

The Generative Adversarial Networks are a class of Deep
Learning Neural Networks mainly used in the image
processing context (Goodfellow et al., 2014). The GAN
structure is formed by two complementary neural networks:
a generator G, usually a Convolutional Neural Network
CNN, and a discriminator D. The generator G is trained
to produce outputs that cannot be distinguished from “real”
input images, however, the discriminator challenges the
generator. The main concept behind GAN architecture
comes from game theory, the generator produces images
and the discriminator try to falsify the work of the generator,
identifying the “fake” images. In this way, both Neural
Networks, G and D learn and compete with each other
during the training process.

In this study, we employ a convolutional GAN which is
associated with the following mapping:

G : x,z → y (1)

where x and y are images and z is a random number. In
our work, images x and y are same size seismograms. We
start with the main objective of the GAN, that shows the
interplay between G and D:

LcGAN(G,D) = Ex,y[logD(x,y)] +
Ex,z[log(1−D(x,G(x,z))], (2)

where E is the expected value of the expression. In this
expression, G tries to minimize its objective against an

adversarial D that tries to maximize it. In this way, the
balance between G and D is summarized in the expression
G∗ = argminG maxD LcGAN(G,D).

The basic problem in the Machine Learning methodology
consists in approximating the output y from the produced
G(x,z) by minimizing their difference. The choice of the
best norm, ||.||L, to estimate the difference is a research
topic. The L1 norm, that is mostly used in this paper, is
done by:

LL1(G) = Ex,y,z[||y−G(x,z)||1]. (3)

In the next section we test both L1 and L2 norms that in our
model are considered hyperparameters.

An interesting quantifier to quantify the behavior of the
discriminator during the training process is the loss function
of the discriminator:

Gloss(G,D) =−Ex,z[log(D(x,G(x,z)))] (4)

the objective of the discriminator is to maximize this
function.

The final objective of the GAN methodology contemplates
the minimization of both equations (2) and (3). That means,
the minimization of the functional:

G∗ = argmin
G

max
D

LcGAN(G,D)+λLL1(G). (5)

Note that this equation introduces the extra
hyperparameter λ which balances the pure minimization
of the generator LL1(G) and the discriminator generator
interplay term LcGAN .

The GAN interpolator

The construction of the interpolator is based on GAN, the
architecture used is the same from Isola et al. (2017).
The concept of the method is the following, we take
seismograms and decimated them to create a training
set for the ML. After we use the trained Neural Network
produced by the GAN, the GAN interpolator, to create
full seismograms from interpolated ones. The decimation
process consisted in deleting half of the traces. By
methodological reasons, we keep the vector in the seismic
matrix, to produce a decimated matrix with the same size
of the original matrix, that means, with the same shape
(250×250) of the training set.

The data used to train and test the neural network is in
the shot-gather domain. The training data preprocessing
consisted in normalizing the amplitudes in the range
{−1,1}, furthermore the seismogram was split in 10
windows (250 samples per 250 traces). The splitting
process is important to create size windows compatible
with the GAN algorithm. Figure 2 shows an example
of training set with the original seismogram and the
corresponding decimated one with half of the traces. This
seismogram window is the one inside the rectangular box
of Figure 1.

Results

The GAN technique to interpolate seismic traces depends
on hyperparameters that are intrinsic to the GAN. In this
study, we numerically explore the main hyperparameters
used in ML methodology. Our approach consists in
testing the convergence of the loss function for the
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Figure 2: Example of a 250×250 window from the original
(a) and decimated (b) seismogram. In the decimated
window, 50% of the traces have been set to zero.

analyzed hyperparameters and checking the quality of the
interpolated seismograms.

We tested the following hyperparameters of the GAN:

• Batch size: 1 and 2;

• Training/test ratio: 0.85, 0.60 and 0.35;

• Factor λ : 10, 100 and 1000;

• Loss norm: L1 and L2;

• Kernel size: 3, 4, 5 and 6;

• Generator learning rate: 1× 10−4, 2× 10−4 and 4×
10−4;

• Discriminator learning rate: 1×10−4, 2×10−4 and 4×
10−4.

The total number of tested configurations is 2×3×3×2×
4×3×3= 1296. We trained the GAN with each combination
of these hyperparameters. In the following, we present
figures with the mean values and the 95% confidence
intervals of the quantifiers LcGAN , Gloss and LLn depending
on the hyperparameter. We analyze each hyperparameter
in the next sections.

Batch size

The batch size specifies the amount of samples trained,
at the same time, during the neural network learning
process. In our case, we consider both neural networks,
the generator and the discriminator. In principle, smaller
batch sizes are preferred since it implies in smaller neural
network sizes and smaller computational times. In Figure 3
we show the evolution of LcGAN(G,D) during the learning
process for two values of batch size. The quantifier
LcGAN(G,D) shows a similar behavior for all batch sizes.
We conclude that the batch size is not an important factor
in our analysis. In this way, our option was using a batch
size equal to one because of computational time economy.
Similar result was related by Isola et al. (2017).

Training/Test set ratio

The neural network inside the ML technique needs to be
trained and tested. The most usual training test ratio is 70
to 30, that means, from the available data we employ 70%
of the data for training and 30% for testing. If the testing
set is not large, the confidence of the results weakens.
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Figure 3: Comparing the evolution of LcGAN(G,D) during
the learning process for batch sizes 1 and 2.

Otherwise, if the training set is not large, the neural network
may have not enough data to learn, impairing the ML
performance. Figure 4 shows a similar pattern of Figure 3
for three distinct training/test ratios. Our results suggest
that the training/test ratio is not decisive in our problem,
which means that the GAN can perform well even when
the training set is not large.
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Figure 4: Comparing the evolution of LLn(G) during the
learning process for the training/test ratios 0.85, 0.60 and
0.35.

λ Factor

The factor λ is a regularizer parameter that weights the
trade-off between LcGAN and LLn in the objective function.
If λ = 0, then the generator just try to fool the discriminator
by minimizing LcGAN , regardless of the generator output
being similar to the target output or not. But if λ tends
to infinity, then the neural network behave like a CNN,
ignoring the GAN discriminator. In Figure 5 we show
the evolution of LLn(G) during the learning process for
three values of λ , the smaller value of loss function which
corresponds to best λ factor is λ = 1000.

In Figure 6 we present the output of the generator using the
factors λ = 10 (b) and λ = 1000 (c) for the same decimated
input seismogram (a). We observe that λ = 10 generated
noisy artifacts that are absent in λ = 1000, see the red
rectangle in the figure. Considering that λ = 1000 leads
to smaller values of LLn and that it generates less noisy
artifacts, then we suggest using the largest value.

Loss norm

The choice of the best norm (∥.∥1 or ∥.∥2) influences how
the generator tries to find the minimum (5) by adjusting its
neural network weights. In Figure 7 we show the evolution
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Figure 5: Comparing the evolution of LLn(G) during the
learning process for the λ factors 10, 100 and 1000.
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Figure 6: Comparison of the generator output for different λ

values. In (a) we present the input decimated seismogram
window, in (b) the output for λ = 10 and in (c) the output for
λ = 1000. The red rectangle emphasizes a noisy output in
(b) that is not present in (c).

of Gloss(G,D) during the learning process for the norms
L1 and L2. Note that the generator tries to minimize this
function, while the discriminator tries to maximize it. The
graph shows that the generator is better at fooling the
discriminator with norm L2 because the Gloss values are
smaller when we use this norm.
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Figure 7: Comparing the evolution of Gloss(G,D) during the
learning process for L1 and L2 norms.

In Figure 8 we present the output of the generator using
the norms L1 (b) and L2 (c) given the decimated input
seismogram (a). In the rectangular box, we observe that
the reflected waves are a little more blurry in L2 than in
L1 case. Indeed, this is an expected behavior, since L1
encourages less blurring than L2 (Isola et al., 2017). Thus,
L1 is preferred because it allows the observation of higher
frequency signals.
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Figure 8: Comparison of the generator output for L1 or L2
norms. In (a) we present the input decimated seismogram
window, in (b) the output for L1 and in (c) the output for L2.
The red rectangle emphasizes a crop in which the reflected
wave is more blurry in (b) than in (c).

Kernel size

Another important hyperparameter to test is the kernel size
of the convolution of the CNN generator. In fact, the kernel
size determines the image area that is compressed during
the convolutional process of the CNN. In Figure 9 we show
the Gloss versus iteration process for kernel size from 3 up
to 6. The graph shows that the generator is better at fooling
the discriminator with smaller kernel sizes.
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Figure 9: Comparing the evolution of Gloss(G,D) during the
learning process for kernel sizes from 3 to 6.

In Figure 10 we present the output of the generator using
the kernel sizes 3 (b) and 6 (c) given a decimated window
of a seismogram as input (a). In the rectangular box, we
observe some noisy artifacts when the kernel size is 6,
which is not present when the kernel size is 3. Thus, we
opt to use smaller kernel sizes.

Generator learning rate vs Discriminator learning rate

The learning rate is a hyperparameter used to set the rate
at which the neural network updates its parameters. We
have compared the generator and discriminator learning
rates together evaluating how the difference between these
two parameters influences the performance of the neural
network. In Figure 11 we present the generator’s output
using nine pairs of learning rates, varying the values 1×
10−4, 2×10−4 and 4×10−4. Each column refer to a single
value of discriminator learning rate (DLR) while each row
refer to a single value of generator learning rate (GLR).
Inspecting the rectangular box area, we observe that the
wave reflections have better quality when both learning
rates are 1× 10−4, leading to less noisy image. Thus, we
conclude that it is better to use lower learning rates for both
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Figure 10: Comparison of the generator output for different
kernel sizes. In (a) we present the input decimated
seismogram window, in (b) the output for kernel size 3
and in (c) the output for kernel size 6. The red rectangle
emphasizes a noisy output in (c) that is not present in (b).
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Figure 11: Comparison of the generator output for different
learning rates of the generator and the discriminator. Each
column refer to the outputs using the discriminator learning
rates of 1× 10−4, 2× 10−4 and 4× 10−4, respectively, and
each row refer to the outputs for generator learning rates
of 1× 10−4, 2× 10−4 and 4× 10−4, respectively. The red
rectangle emphasizes a crop that is difficult to interpolate
due to the overlapping wave reflections.

Conclusions

In this work we explore the ML behind the seismic data
GAN interpolator. We illustrated the GAN interpolator
using a geometry in which the receivers are at high depth.
We decimated seismograms to produce the training set
of the GAN interpolator. The testing was performed
reconstructing the decimated seismograms. The core of
the work consists in testing the hyperparameters of the
GAN interpolator, seven hyperparameters were examined:
batch size, training/test ratio, loss norm, kernel size, λ

factor, generator and discriminator learning rates.

The summary of results of the numerical exploration of the

hyperparameters is the following. The batch size is not
a decisive hyperparameter, we recommend using batch
size equal to one to save computational time. We call
attention that a similar result was related by Isola et al.
(2017). The training/test ratio is also a non determinant
quantity, in this case employing the standard pattern 70%
training and 30% testing is a good choice. The loss norm L1
has a sharper resolution when compared to the L2 norm.
Similar result was related by Isola et al. (2017). The best
kernel size was three, larger kernel sizes produce clear
artifacts in the interpolated seismograms. The λ factor
is, indeed, an important hyperparameter, the best choice
is the largest λ , indicating that for a good interpolated
seismogram it is important to give more weight to the
generator than to the discriminator. Both, the generator
and the discriminator learning rates are relevant quantities,
we have obtained the best interpolated seismograms for
the smallest learning rates suggesting that slow neural
network learning is associated to better learning.

Before finishing the study we notice that we have employed
40,000 steps in our simulations. This time corresponds to
the total learning time of the GAN interpolator. However,
for the maximal number of steps studied the simulations
reveal that the neural network has reached a stationary
behavior. To conclude, this is a work in progress and we
are still exploring the best ML parameters to create optimal
interpolated seismograms.
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Géron, A., 2022, Hands-on Machine Learning with Scikit-
Learn, Keras & TensorFlow: O’Reilly Media, 3 edition.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu,
B., Warde-Farley, D., Ozair, S., Courville, A., and

Eighteenth International Congress of the Brazilian Geophysical Society



SEISMIC DATA INTERPOLATION WITH GAN 6

Bengio, Y. Generative Adversarial Networks:, 2014.
arXiv:1406.2661 [cs, stat].

Gülünay, N., 2003, Seismic trace interpolation in the fourier
transform domain: GEOPHYSICS, 68, no. 1, 355–369.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A., 2017, Image-to-
image translation with conditional adversarial networks:
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 5967–5976.

Johnston, D. H., 2013, Practical applications of time-lapse
seismic data: Society of Exploration Geophysicists.

Kaur, H., Pham, N., and Fomel, S., 2021, Seismic
data interpolation using deep learning with generative
adversarial networks: Geophysical Prospecting, 69, no.
2, 307–326.

Mojica, O. F., and Maciel, J. S., 2020, Seismic modeling
from scratch using devito: a demonstration with a typical
brazilian pre-salt model: , 90th SEG Annual International
Meeting, Expanded abstracts, 2714–2718.

Naghizadeh, M., and Sacchi, M. D., 2009, f-x adaptive
seismic-trace interpolation: GEOPHYSICS, 74, no. 1,
V9–V16.

Nguyen, P. K. T., Nam, M. J., and Park, C., 2015,
A review on time-lapse seismic data processing and
interpretation: Geosciences Journal, 19, no. 2, 375–392.

Operto, S., Miniussi, A., Brossier, R., Combe, L.,
Métivier, L., Monteiller, V., Ribodetti, A., and Virieux, J.,
2015, Efficient 3-d frequency-domain mono-parameter
full-waveform inversion of ocean-bottom cable data:
application to valhall in the visco-acoustic vertical
transverse isotropic approximation: Geophysical Journal
International, 202, 1362–1391.

Porsani, M. J., 1999, Seismic trace interpolation using half-
step prediction filters: GEOPHYSICS, 64, no. 5, 1461–
1467.

Ronen, J., 1987, Wave−equation trace interpolation:
GEOPHYSICS, 52, no. 7, 973–984.

Sacchi, M. D., and Ulrych, T. J., 1996, Estimation of the
discrete fourier transform, a linear inversion approach:
GEOPHYSICS, 61, no. 4, 1128–1136.

Sircar, A., Yadav, K., Rayavarapu, K., Bist, N., and Oza,
H., 2021, Application of machine learning and artificial
intelligence in oil and gas industry: Petroleum Research,
6, no. 4, 379–391.

Thorbecke, J., and Draganov, D., 2011, Finite-difference
modeling experiments for seismic interferometry:
Geophysics, 76, no. 6, H1–H18.

Wu, Y., and Lin, Y., 2019, Inversionnet: An efficient
and accurate data-driven full waveform inversion: IEEE
Transactions on Computational Imaging, PP, 1–1.

Zhang, S.-B., Si, H.-J., Wu, X.-M., and Yan, S.-S., 2022,
A comparison of deep learning methods for seismic
impedance inversion: Petroleum Science, 19, no. 3,
1019–1030.

Eighteenth International Congress of the Brazilian Geophysical Society


	Introduction
	Methodology
	Forward seismic modeling
	Generative Adversarial Network
	The GAN interpolator
	Results
	Conclusions
	ACKNOWLEDGMENTS

