

SBGf Conference

18-20 NOV | Rio'25

Sustainable Geophysics at the Service of Society

In a world of energy diversification and social justice

Submission code: 0466RJMX45

See this and other abstracts on our website: <https://home.sbgf.org.br/Pages/resumos.php>

Geological Velocity Modeling for Gross Rock Volume Uncertainty Analysis of the Pre-Salt Reservoir in the Marlim Sul Field, Campos Basin, Offshore Brazil

Nier Ribeiro (PETROBRAS), Alexandre Maul (Petrobras), TIAGO FILGUEIRAS PEREIRA (PETROBRAS), MARCOS ANTONIO SILVEIRA (PETROBRAS), ANTONIO JORGE SA (PETROBRAS), Vitor Novellino (Petróleo Brasileiro S.A. - PETROBRAS), Joclean Vanzeler (Petrobras)

Geological Velocity Modeling for Gross Rock Volume Uncertainty Analysis of the Pre-Salt Reservoir in the Marlim Sul Field, Campos Basin, Offshore Brazil

Copyright 2025, SBGf - Sociedade Brasileira de Geofísica/Society of Exploration Geophysicist.

This paper was prepared for presentation during the 19th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November 2025. Contents of this paper were reviewed by the Technical Committee of the 19th International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of the Brazilian Geophysical Society is prohibited.

Abstract Summary

This study investigates velocity modeling challenges with a focus on accurately estimating the depth uncertainty of a top presalt reservoir, which has a thin (~30 m) oil column located beneath complex Albian carbonate rafts and Aptian salt structures. Leveraging reprocessed 2005 streamer seismic data, calibrated well information, and acoustic inversion (V_p), five alternative velocity models were built by selectively incorporating seismic inversion-derived velocities into key geological intervals. A 2023 PSDM-FWI dataset, calibrated to wells, was also used for comparison. The results demonstrate that combining geological insight with inversion-based velocity refinement enhances depth prediction and supports improved development planning. Ongoing node-based seismic acquisition is expected to lower the uncertainties of these findings and inform future drilling strategies.

Introduction

Velocity modeling is crucial for seismic imaging, interpretation, rock property estimation, and depth forecasting, directly impacting hydrocarbon volume estimation (Maul et al., 2021). According to these authors, velocity models are currently built with geological confidence, incorporating heterogeneities, allowing the characterization enhancement of subsurface geology, as seen in the Brazilian Presalt province, comprised by both Santos and Campos basins. In the Campos Basin, Presalt reservoirs that are located beneath complex Albian carbonate rafts and Aptian salt structures, are key hydrocarbon accumulations on Brazil's southeast margin—especially as Postsalt fields production is declining. The heterogeneous geometry of these overburden layers significantly affects velocity modeling, introducing major challenges in accurate hydrocarbon volume estimation (Camargo et al., 2023).

As part of this study, alternative velocity scenarios were created by incorporating geological understanding of the Albian carbonate and Aptian salt layers along with acoustic impedance inversion. The main uncertainty regarding this reservoir is the depth estimation of top. Due to the relatively small oil column average thickness of ~30m, with a maximum thickness of a hundred meters, an uncertainty range of 1% in the velocity modeling might position the top reservoir below the O/W contact leading to the existence or not of a reservoir with hydrocarbon. The velocity model derived from FWI appeared to accurately capture the low-frequency trend. Introducing high-frequency variations into this velocity field affects the depth positioning of the top of reservoir. The results of the alternative velocity models were compared with the previous velocity model, PSDM FWI adjusted to the wells, and with the new FWI processing with well adjustment by tomography.

Seismic Dataset History of the Area of Interest

Two major streamer seismic acquisitions with reservoir characterization objectives were conducted in the Marlim Sul ringfence area, the first in 2005 and the second in 2010. In this study, we focus on the 2005 streamer dataset, which was selected for its superior acquisition parameters coverage. The 2005 dataset, reprocessed in 2020 and later calibrated to well data by the interpreter, served as the main input for the current geological model. The vertical velocity obtained from the 2020 reprocessed data—prior to well calibration—was incorporated into the velocity model presented in this study. In addition, seismic velocity (V_p) was derived from the ratio

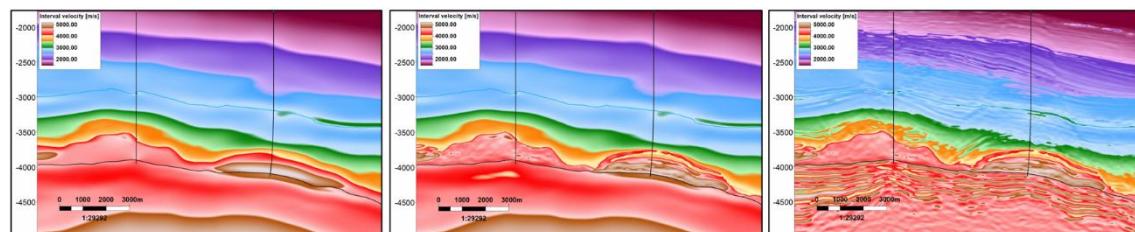
of acoustic impedance (Z_p) to density (ρ), both obtained through elastic seismic inversion. The 2020 velocity model was built by smoothing a legacy model and removing velocity variations from salt and carbonate structures. Delta was estimated from well data, and Epsilon was set as 1.5 times Delta. Multiple tomography iterations were performed in the Postsalt layer, followed by FWI refining the velocity model. Additional tomography iterations improved gather moveouts. Constant velocities of 4480 m/s and 5080 m/s were used for the salt layer and below the basement top, respectively. A new PSDM-FWI processing, completed in 2023, was also employed in this study. The 2023 velocity model was based on a smoothed legacy model, with the removal of velocities associated with salt and carbonate structures. The initial Delta was defined using a gradient between the Seafloor and the Top of the Albian, with a constant value of 0.031 in the Albian layer. Epsilon was set as 1.7 times Delta. The salt and Presalt layers were considered isotropic. FWI was applied to invert the velocity model while keeping the anisotropic parameters fixed. Subsequently, tomography was performed to refine the model, followed by well tie adjustments and recalculation of Delta and Epsilon. Finally, additional tomography iterations were carried out to invert Epsilon and improve moveouts at far offsets. The salt velocity was allowed to vary from 4400 m/s to 4800 m/s.

Both the 2020 and 2023 models are Tilted Transverse Isotropy (TTI) anisotropic velocity models developed through the integration of FWI and advanced tomographic techniques. The main difference lies in the fact that the 2020 model did not include well calibration tomography or inversion of anisotropic parameters. The results from both processing workflows were compared with the methodology presented in this study. All six wells in the study area that penetrated the Presalt reservoir were utilized for this analysis.

Methodology

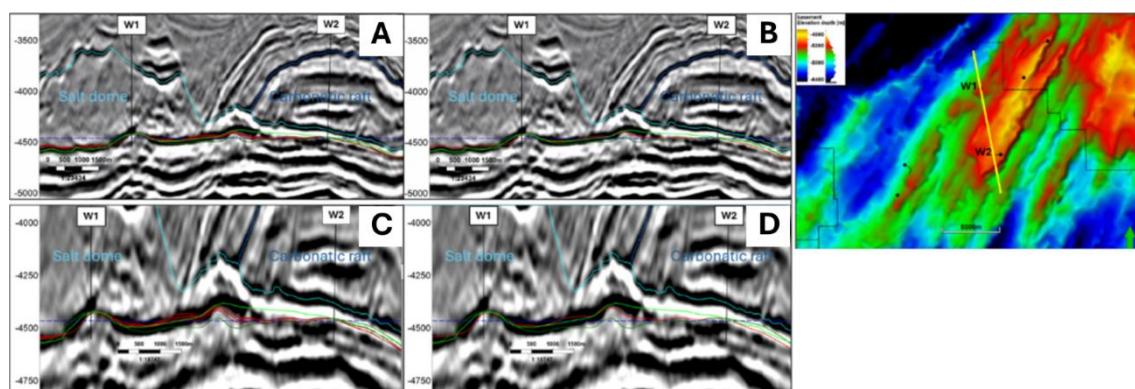
Considering the Presalt's overburden, in this area of Campos Basin, Albian carbonate and Aptian salt layers are the main geological heterogeneities that will have an impact on the depth positioning of the reservoirs (Novellino et al., 2023). To generate different velocity scenarios, a combination between FWI seismic processing V_p model and acoustic inversion V_p was performed. Table 1 provides a description of the five alternative velocity scenarios generated:

Table 1: Different V_p scenarios.


Scenario	Model description
1	V_p model of seismic processing, calibrated with well velocity from time depth-pairs
2	V_p model of acoustic inversion, calibrated with well velocity from time depth-pairs
3	V_p model of seismic processing with velocity replacement by acoustic inversion velocity in Albian carbonate rafts, calibrated with well velocity from time depth-pair
4	V_p model of seismic processing with velocity replacement by acoustic inversion velocity in both Albian carbonate rafts and Aptian evaporite layer (salt), calibrated with well velocity from time depth-pairs
5	V_p model of seismic processing with velocity replacement by acoustic inversion velocity in the Aptian evaporite layer (salt), calibrated with well velocity from time depth-pairs.

Before modeling, all scenarios required editions of the time-interval velocity by specific regions, determined by surfaces that delimited important velocity domains, to eliminate spurious values in each region. A reliable background range was provided by a statistical analysis of seismic processing interval velocity in these regions. Scenarios 1 and 2 directly used the V_p , respectively, the seismic processing V_p and acoustic inversion V_p . To create scenarios 3, 4 and 5, some combinations of the seismic processing V_p model and the acoustic impedance V_p model were performed. In scenario 3, the V_p model of seismic processing was replaced by V_p model from acoustic inversion velocity only in Albian carbonate layers. In scenario 5, the V_p substitution occurred only in Aptian evaporite layer (salt). And In scenario 4, the V_p substitution occurred in both Albian carbonate and Aptian evaporite layers. The final step of calibration with well velocities, of each scenario, was conducted, by applying the workflow for well-velocity calibration, of the

average velocity, in time domain. Kriging with external drift uses the average velocity from wells, as hard data, to calibrate each scenario's average velocity. It is expected that adjustments performed by the kriging process modify each input average velocity field, providing a variability in gross rock volumes (GRV) to be accepted in uncertainty analysis stage.


Results

Among the five scenarios generated using the methodology described above, Scenario 4 was the most representative. It incorporated inversion-derived V_p in the Albian and salt layers, together with the processing velocity in the upper layers, where uncertainty is lower and high-frequency velocity variations are less pronounced. Among the seven scenarios, only few representative ones were selected to be highlighted in the Figure 1: Scenario 1 (the PSDM V_p model with well calibration), Scenario 2 (the Acoustic inversion V_p model with well calibration) and above explained Scenario 4.

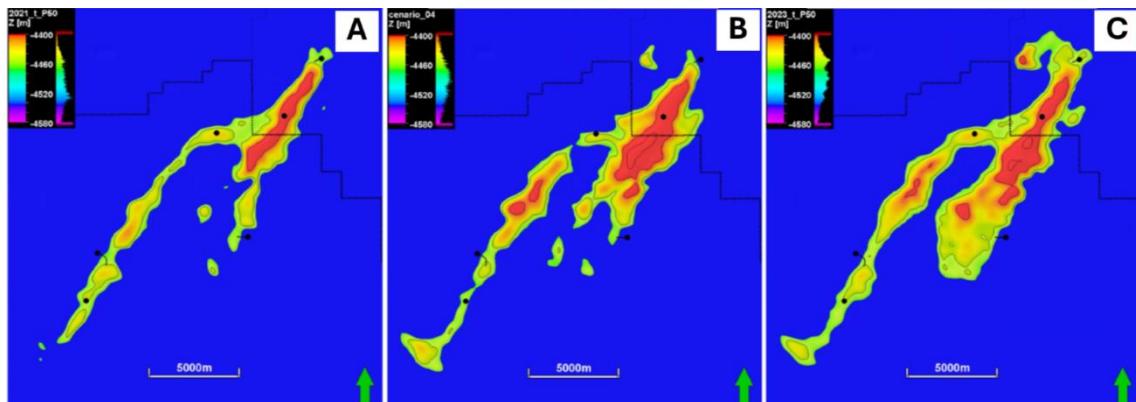

Figure 1: Left – Scenario 1 (V_p model from seismic processing); center – Scenario 4 (V_p model from seismic processing with V_p replacement in carbonate rafts and salt); right – Scenario 2 (V_p model from acoustic inversion). All models calibrated with well velocities from time–depth pairs.

Figure 2 shows a seismic section over two wells, W1 and W2, containing a salt dome and a carbonate raft structure, and emphasizes the variations in the Presalt reservoir top surfaces due to changes in V_p model. The dark green line represents 2020 top reservoir, light green line represents 2023 top reservoir, red lines represent seven modeled V_p scenarios and the blue dotted line represents the oil/water contact.

Figure 2: Seismic section through wells W1 and W2 comparing the variations in the Presalt reservoir top surfaces. (A) section with 2020 (dark green), 2023 (light green) and seven scenarios modeled V_p (red); (B) section with 2020 (dark green), 2023 (light green) and elected best scenario modeled V_p (scenario 4) (red); (C) Zoom of (A); (D) Zoom of (B).

The GRV increased 80% from the 2020 PSDM model to the Scenario 4 Model, and 99% to the 2023 PSDM model. The uncertainty at the top of the reservoir varied within a more optimistic range compared to the previous model (Figure 3).

Figure 3: Three versions of the Presalt top reservoir with the O-W surface showing the uncertainties: (A) 2020 model; (B) Scenario 4; and (C) 2023 model.

Conclusions

The velocity modeling results were consistent with the outcome of the new anisotropic 2023 PSDM FWI processing. The five realizations of the velocity model presented above indicate (GRV) with intermediate values between those derived from the seismic data processed in 2020 and the model generated using the reprocessed seismic data from 2023. The results demonstrate a gradual evolution of the GRV, reflecting the progressive incorporation of information from the new seismic processing. Currently, a node based seismic survey is being acquired and it is expected to decrease the uncertainties of these findings and inform future drilling strategies.

Acknowledgments

The authors would like to express their appreciation to Reginaldo A. Pereira Jr. and Marcelli G. Reid for their guidance and support throughout the development of this work. We are also grateful to Petrobras for their permission to publish this paper. Special thanks are extended to Jorge N. Hounie and Francisco J. A. Vanzeler for their significant contributions to the technical content.

References

Camargo, G., González, M., Maul, A., Mohriak, W. [2023] Challenges in velocity model building in areas with carbonate rafts: a case study in the Campos Basin. In: 18th International Congress of the SBGf

Maul, A., Bulcão, A., Dias, R.M., Pereira-Dias, B., Teixeira, L., Borges, F., González, M., Guizan, C., Cetale, M. [2021] Benefits of inserting salt stratification to detail velocity model prior to least-squares reverse-time migration. *Journal of Applied Geophysics*, 195

Novellino, V., Maul, A., González, M., Freire, F. [2023] Dealing with the Albian-Cenomanian of the Santos Basin, and the possible implications in terms of compression velocity model and the related applications. In: 18th International Congress of the SBGf.