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Abstract 

Seismic data interpretation is often challenged by various forms of noise, which can obscure 
subsurface features critical to hydrocarbon exploration. This study proposes a deep learning 
approach based on the U-KAN architecture – an enhanced U-Net with Kolmogorov–Arnold 
Networks (KAN) – to perform seismic denoising on data from Paraná Basin. The preprocessing 
pipeline includes automatic gain control (AGC), two-stage F-K filtering, trapezoidal bandpass 
filtering, amplitude clipping, and normalization. The proposed model was trained using a hybrid 
loss function combining L1 and SSIM, and evaluated using multiple metrics. The generated 
images achieved an average PSNR of 25.15 dB and SSIM of 0.50, with histogram correlation of 
0.9971 and spectral correlation of 0.8933. Compared to the original noisy data (PSNR = 19.09 
dB, SSIM = 0.27), the results demonstrate a significant improvement in data quality. 

Introduction 
 
Seismic imaging plays an important role in hydrocarbon exploration and insights into the 
geological structure and composition of the Earth. However, the interpretation of seismic data is 
often challenged by various types of noise that can obscure subsurface features. Traditional noise 
attenuation methods, such as predictive filtering and sparse transform techniques, rely heavily on 
manual parameter tuning and expert knowledge, which can be time-consuming and may not 
generalize well across different datasets (Bai et al., 2019; Chen et al., 2014). 

In recent years, machine learning (ML), particularly deep learning (DL), has emerged as a 
powerful tool for seismic data processing. DL models, such as convolutional neural networks 
(CNNs), have demonstrated remarkable capabilities in denoising tasks by learning complex 
patterns directly from the data. These models can effectively suppress both random and coherent 
noise without the need for explicit modeling of noise characteristics (Jun et al., 2020). 

In summary, the integration of ML techniques into seismic data processing workflows holds 
significant potential for improving noise attenuation, reducing interpretation time, and enhancing 
the accuracy of subsurface imaging. 

Method 
 
The U-KAN architecture (Li et al., 2024) integrates a U-Net-inspired encoder-decoder backbone 
with Kolmogorov-Arnold Network (KAN) layers to improve feature extraction. Its design 
incorporates the qualities of U-NET, that preserves spatial information across different resolution 
scales, while leveraging KAN's capacity to model complex and non-linear relationships in the 
data, resulting in both accurate and interpretable outputs 

The encoder is composed of convolutional blocks that extract hierarchical features across multiple 
spatial resolutions. The implementation follows the original design in Li et al. (2024). 

Following feature extraction, the encoded representations are passed through the tokenized KAN 
stage. At this point, the feature maps are divided into 2D patches and projected into a latent space 
via linear transformations (Li et al., 2024). These tokenized KAN layers employ non-linear and 
parameterizable activation functions to model intricate patterns and boost representational 
capabilities. 
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The decoder mirrors the encoder structure, using KAN blocks and convolutional layers to 
progressively reconstruct the spatial resolution of the segmented image. Skip connections are 
used throughout the decoder to integrate high-resolution features from the encoder, which 
support precise denoising. The final output is a denoised seismic image. 

Dataset  

The data set was created with the objective of providing pre-processed and filtered seismic data, 
to be used as reference for noise removal analysis. The raw field data is from line 236-0062 
(ANP/REATE, 2021) at Paraná Basin.  

Preprocessing begins with automatic gain control (AGC) to normalize amplitude variations, 
followed by a double Fourier transform to convert the data into the frequency-wavenumber (F-K) 
domain. This allows the analysis of wave propagation properties and the identification of regions 
of interest. To suppress coherent noise, F-K filtering was applied sequentially in shot and receiver 
domains, targeting slopes opposite to those of primary reflectors to attenuate noise in both offset 
directions. 

After F-K filtering, a trapezoidal bandpass filter with cutoff frequencies at 0, 3, 5, and 100 Hz was 
applied. An amplitude clipping in the [-10.000, +10.000] range was used, to mitigate influence of 
extreme values (outliers and spikes). As last step, the data were normalized to the [-1, 1] interval, 
ensuring stability and efficiency during deep learning model training. 

To assert a better similarity with the filtered data, a hybrid loss function (defined in Eq. 1) was 
employed, combining the mean absolute error (L1) with the structural similarity index (SSIM) 
(Wang et al., 2004). 

 

Equation 1: Hybrid loss function combining L1 and SSIM. 

 
Results 
The U-KAN model was trained using a hybrid loss function on an NVIDIA RTX 4090 GPU for 400 
epochs, with an early stopping patience of 60 epochs. The dataset consisted of 460 seismic 
seismograms in the shot domain, with 75% used for training, 15% for validation, and 10% for 
testing. 

During the evaluation phase, the generated images were compared to the filtered targets; 
reconstruction quality was measured using the Peak Signal-to-Noise Ratio (PSNR) (Wang et al., 
2004), SSIM, intensity histogram correlation and frequency spectrum correlation between output 
and target. 

The average metrics and standard deviation are presented in Table 1. 

 

Table 1: Average performance metrics on the test set. 
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Examples of the results are shown in Figures 1 and 2, and their amplitude spectra in Figure 3. 
The Target (filtered image) and the Output (model-generated image) spectra closely resemble 
each other across both low and high frequencies, with the output spectrum exhibiting only a slight 
reduction in energy. Table 1 further confirms this similarity: histogram and spectral-correlation 
metrics demonstrate that the generated images match the data distribution of the filtered 
reference. 

 

Figure 1: Input (left) is the noisy original image, Target (center) the filtered reference image, and 
Output (right) the network’s prediction. One can see prediction results are close to Target. 

 

Figure 2: Original noise is the difference between Input and Target (see Fig. 1), Noise removed 
the difference between Input and Output (see Fig. 1), and Difference between noises is the 
difference between the noises present in the original data and removed by the method. 
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Figure 3: Comparison of the amplitude spectra, in decibels, for Input, Output, and Target (see 
Fig. 1). The Input exhibits higher energy levels, indicating the presence of unwanted noise. The 
output, generated by the model, closely follows the target spectrum. 

Figures 3 and 2 also illustrate how the model attenuates noise. Whereas the Input spectrum 
exhibits elevated amplitudes indicative of unwanted noise, the Output spectrum preserves key 
signal characteristics – both amplitude levels and spectral variations – while smoothing out high-
amplitude noise components. Furthermore, comparing the Original noise with the Noise removed 
– best visualized in the Difference between noises – reveals that traditional filtering removes more 
of the signal than U-KAN’s output. As final conclusions, these results demonstrate that U-KAN 
effectively reduces noise without compromising the signal integrity of the signal. 

Conclusions 

The model shows promising performance, as seen in Table 1 Although the filtered reference 
image is not perfectly clean, Figure 2 demonstrates that the model-generated images effectively 
have reduced noise while preserving relevant signal. This result suggests that, by further 
increasing the model's receptive field, it may become capable of even better isolating noise while 
maintaining structural features. 

Acknowledgments 

The authors would like to thank the Brazilian National Agency for Petroleum, Natural Gas and 
Biofuels (ANP) and CNPC Brasil for subsidizing this research project through the R&D Clause. 

References 

ANP/REATE, 2021, Public Land Data Free Access. https://reate.cprm.gov.br/anp/TERRESTRE 

Bai, M., J. Wu, H. Zhang, M. Zhang, and Y. Chen, 2019, Gaussian beam reconstruction of seismic 
data: Geophysics, 84, S373–S387.  

Chen, Y., S. Fomel, and J. Hu, 2014, Iterative deblending of simultaneous-source seismic data 
using seislet-domain shaping regularization: Geophysics, 79, V179–V189.  

Jun, H., H.-T. Jou, C.-H. Kim, S. H. Lee, and H.-J. Kim, 2020, Random noise attenuation of 
sparker seismic oceanography data with machine learning: Ocean Science, 16, 1367–1383.  

Li, C., X. Liu, W. Li, C. Wang, H. Liu, Y. Liu, Z. Chen, and Y. Yuan, 2024, U-kan makes strong 
backbone for medical image segmentation and generation. Wang, Z., A. Bovik, H. Sheikh, and E. 
Simoncelli, 2004, Image quality assessment: from error visibility to structural similarity: IEEE 
Transactions on Image Processing, 13, 600–612. 

https://reate.cprm.gov.br/anp/TERRESTRE

