18-20 NOV |

Sustalnanle ae‘ﬁimysrcs at:the Service of Society.

nun.
‘ 3 Bl
Ina world of energy uwersmcatmn anu soclal l}lstlce _ 7 o 4..;::“

Submission code: 08DDRX498B

See this and other abstracts on our website: https://home.sbgf.org.br/Pages/resumos.php

Leveraging U-KAN Deep Learning Architecture for
Seismic Noise Attenuation

Victor Ferreira (NCA UFMA), Alan Aradjo (NCA UFMA), Luis Sepulveda (Tecgraf PUC-Ri0),
Carlos Rodriguez (Tecgraf Institute/PUC-RIi0), Deane Roehl (Tecgraf Institute/PUC-Ri0),
Mauricio Almeida (NCA/UFMA), Gabriel Costa (NCA UFMA), Aristéfanes Silva (NCA UFMA),
Anselmo Paiva (NCA UFMA)




@ SBGf Conference

18-20 nov | Ri0"'25

Leveraging U-KAN Deep Learning Architecture for Seismic Noise
Attenuation

Copyright 2025, SBGf - Sociedade Brasileira de Geofisica/Society of Exploration Geophysicist.

This paper was prepared for presentation during the 19« International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November
2025.Contents of this paper were reviewed by the Technical Committee of the 19« International Congress of the Brazilian Geophysical Society and do not
necessarily represent any position of the SBG, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes
without the written consent of the Brazilian Geophysical Society is prohibited.

Abstract

Seismic data interpretation is often challenged by various forms of noise, which can obscure
subsurface features critical to hydrocarbon exploration. This study proposes a deep learning
approach based on the U-KAN architecture — an enhanced U-Net with Kolmogorov—Arnold
Networks (KAN) — to perform seismic denoising on data from Parana Basin. The preprocessing
pipeline includes automatic gain control (AGC), two-stage F-K filtering, trapezoidal bandpass
filtering, amplitude clipping, and normalization. The proposed model was trained using a hybrid
loss function combining L1 and SSIM, and evaluated using multiple metrics. The generated
images achieved an average PSNR of 25.15 dB and SSIM of 0.50, with histogram correlation of
0.9971 and spectral correlation of 0.8933. Compared to the original noisy data (PSNR = 19.09
dB, SSIM = 0.27), the results demonstrate a significant improvement in data quality.

Introduction

Seismic imaging plays an important role in hydrocarbon exploration and insights into the
geological structure and composition of the Earth. However, the interpretation of seismic data is
often challenged by various types of noise that can obscure subsurface features. Traditional noise
attenuation methods, such as predictive filtering and sparse transform techniques, rely heavily on
manual parameter tuning and expert knowledge, which can be time-consuming and may not
generalize well across different datasets (Bai et al., 2019; Chen et al., 2014).

In recent years, machine learning (ML), particularly deep learning (DL), has emerged as a
powerful tool for seismic data processing. DL models, such as convolutional neural networks
(CNNs), have demonstrated remarkable capabilities in denoising tasks by learning complex
patterns directly from the data. These models can effectively suppress both random and coherent
noise without the need for explicit modeling of noise characteristics (Jun et al., 2020).

In summary, the integration of ML techniques into seismic data processing workflows holds
significant potential for improving noise attenuation, reducing interpretation time, and enhancing
the accuracy of subsurface imaging.

Method

The U-KAN architecture (Li et al., 2024) integrates a U-Net-inspired encoder-decoder backbone
with Kolmogorov-Arnold Network (KAN) layers to improve feature extraction. Its design
incorporates the qualities of U-NET, that preserves spatial information across different resolution
scales, while leveraging KAN's capacity to model complex and non-linear relationships in the
data, resulting in both accurate and interpretable outputs

The encoder is composed of convolutional blocks that extract hierarchical features across multiple
spatial resolutions. The implementation follows the original design in Li et al. (2024).

Following feature extraction, the encoded representations are passed through the tokenized KAN
stage. At this point, the feature maps are divided into 2D patches and projected into a latent space
via linear transformations (Li et al., 2024). These tokenized KAN layers employ non-linear and
parameterizable activation functions to model intricate patterns and boost representational
capabilities.
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The decoder mirrors the encoder structure, using KAN blocks and convolutional layers to
progressively reconstruct the spatial resolution of the segmented image. Skip connections are
used throughout the decoder to integrate high-resolution features from the encoder, which
support precise denoising. The final output is a denoised seismic image.

Dataset

The data set was created with the objective of providing pre-processed and filtered seismic data,
to be used as reference for noise removal analysis. The raw field data is from line 236-0062
(ANP/REATE, 2021) at Parana Basin.

Preprocessing begins with automatic gain control (AGC) to normalize amplitude variations,
followed by a double Fourier transform to convert the data into the frequency-wavenumber (F-K)
domain. This allows the analysis of wave propagation properties and the identification of regions
of interest. To suppress coherent noise, F-K filtering was applied sequentially in shot and receiver
domains, targeting slopes opposite to those of primary reflectors to attenuate noise in both offset
directions.

After F-K filtering, a trapezoidal bandpass filter with cutoff frequencies at 0, 3, 5, and 100 Hz was
applied. An amplitude clipping in the [-10.000, +10.000] range was used, to mitigate influence of
extreme values (outliers and spikes). As last step, the data were normalized to the [-1, 1] interval,
ensuring stability and efficiency during deep learning model training.

To assert a better similarity with the filtered data, a hybrid loss function (defined in Eq. 1) was
employed, combining the mean absolute error (L1) with the structural similarity index (SSIM)
(Wang et al., 2004).

N
[Lhyoria(z,y) = a % Z|Ii —yi| +(1 — ) (1 — SSIM(z, y)) ] (1)

=1

L1

Equation 1: Hybrid loss function combining L1 and SSIM.

Results
The U-KAN model was trained using a hybrid loss function on an NVIDIA RTX 4090 GPU for 400
epochs, with an early stopping patience of 60 epochs. The dataset consisted of 460 seismic
seismograms in the shot domain, with 75% used for training, 15% for validation, and 10% for
testing.

During the evaluation phase, the generated images were compared to the filtered targets;
reconstruction quality was measured using the Peak Signal-to-Noise Ratio (PSNR) (Wang et al.,
2004), SSIM, intensity histogram correlation and frequency spectrum correlation between output
and target.

The average metrics and standard deviation are presented in Table 1.

PSNR (dB) SSIM Hist. Corr. Spectra Corr.
Generated Image (per image) 25.15+1.35 0.5035+0.0526  0.9971 +0.0022  0.8933 + 0.0412
Noisy Image 19.09 £0.04 0.2715 4+ 0.0022 — —

Table 1. Average performance metrics on the test set.
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Examples of the results are shown in Figures 1 and 2, and their amplitude spectra in Figure 3.
The Target (filtered image) and the Output (model-generated image) spectra closely resemble
each other across both low and high frequencies, with the output spectrum exhibiting only a slight
reduction in energy. Table 1 further confirms this similarity: histogram and spectral-correlation
metrics demonstrate that the generated images match the data distribution of the filtered

reference.
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Figure 1: Input (left) is the noisy original image, Target (center) the filtered reference image, and

Output (right) the network’s prediction. One can see prediction results are close to Target.
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Figure 2: Original noise is the difference between Input and Target (see Fig. 1), Noise removed
the difference between Input and Output (see Fig. 1), and Difference between noises is the
difference between the noises present in the original data and removed by the method.
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Figure 3. Comparison of the amplitude spectra, in decibels, for Input, Output, and Target (see
Fig. 1). The Input exhibits higher energy levels, indicating the presence of unwanted noise. The
output, generated by the model, closely follows the target spectrum.

Figures 3 and 2 also illustrate how the model attenuates noise. Whereas the Input spectrum
exhibits elevated amplitudes indicative of unwanted noise, the Output spectrum preserves key
signal characteristics — both amplitude levels and spectral variations — while smoothing out high-
amplitude noise components. Furthermore, comparing the Original noise with the Noise removed
— best visualized in the Difference between noises — reveals that traditional filtering removes more
of the signal than U-KAN’s output. As final conclusions, these results demonstrate that U-KAN
effectively reduces noise without compromising the signal integrity of the signal.

Conclusions

The model shows promising performance, as seen in Table 1 Although the filtered reference
image is not perfectly clean, Figure 2 demonstrates that the model-generated images effectively
have reduced noise while preserving relevant signal. This result suggests that, by further
increasing the model's receptive field, it may become capable of even better isolating noise while
maintaining structural features.
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