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Abstract Summary 

This study presents automation strategies for onboard quality control of seismic nodes. Our goal 
is to overcome the limitations of subjective analyses performed by technicians, thereby optimizing 
the speed, accuracy, and reliability of identifying nodes unsuitable for reuse. The proposed 
methodology analyzes battery voltage decay, tilt measurements, and the amplitude spectrum of 
geophone components. Battery decay patterns are assessed using logistic regression models 
trained with geometric features extracted from voltage time series. Amplitude spectral 
consistency, in turn, is verified through divergence metrics applied in the frequency domain. We 
validated the methodology with 2,479 nodes—approximately 15% of the complete dataset—
manually labeled based on field records. The results showed that 99% of the nodes were correctly 
identified, with only three genuine anomalous nodes not being recognized. The high classification 
performance and operational feasibility of the methodology reinforce its potential in obtaining 
more effective quality control workflows.  

1 Introduction 

In deepwater seismic surveys, seismic nodes are deployed on the seafloor and remain 
operational for periods that can exceed 100 days. Due to the high number of required recording 
positions relative to the limited number of available nodes, a roll-along deployment scheme is 
employed to optimize seismic data acquisition. This cycle of recovery and repositioning intensifies 
the need for rigorous quality control to ensure the continuous functionality of the equipment. 
Inadequate quality control of operational node data can lead to the reuse of malfunctioning 
equipment, compromising seismic acquisition and resulting in incomplete records, which 
frequently need re-surveying in certain areas. This quality control process involves critical 
assessments of battery performance, node tilt, spectral recording behavior, and data integrity. 
This control is performed manually and due to the large volume of data to analyze, sampling is 
employed, not encompassing a complete analysis of all operational data. The objective of this 
work is to implement automation strategies to mitigate the limitations of subjective evaluations of 
technicians in quality control, optimizing speed, accuracy, and reliability in identifying unsuitable 
nodes for reuse. 

2 Methodology 

The methodology employed consists of three node feature analyses: battery voltage decay, tilt 
relative to the ocean bottom, and amplitude spectrum.  

2.1 Battery Voltage Decay Analysis 

In the battery quality control process, nodes are expected to exhibit voltage decay characteristics 
consistent with the specifications provided by the manufacturer. This evaluation primarily 
considers the total acquisition elapsed time and the variation in voltage over time. 

The recording elapsed times of the nodes are evaluated collectively to detect outliers. These 
times are analyzed considering three aspects: (a) the acquisition end times should be ordered 
chronologically, (b) the differences in elapsed times between neighboring nodes cannot exceed 
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3 days, and (c) each elapsed time must be within the median ± standard deviation of all elapsed 
times belonging to the same receiver line. 

In addition to the collective analysis of recorded elapsed times, 
individual evaluations of node voltage variations aim to identify 
atypical decay patterns. These patterns are handled by two 
binary logistic classifiers (HOSMER et al., 2013), an approach 
well-suited for distinguishing between two groups, normal and 
anomalous nodes. These classifiers are driven by geometric 
parameters obtained from the voltage curves, including the 
average voltage decay rate (i.e., the slope between the first 
and last measurements), and the deviation of the observed 
decay from an ideal linear regression. Combining these 
classifiers substantially increases the accuracy of detecting 
anomalous voltage decay behavior. 

2.2 Equipment Tilt Analysis 

This analysis aims to provide technicians with an additional parameter for more assertive 
judgments regarding data integrity. The reported information includes: (a) identification of 
equipment tilts above 10 degrees (b) detection of abrupt equipment tilt variations over time (c) 
flagging of potentially inconsistent tilt values. Equipment tilt variation is estimated based on the 
difference between two average of tilt values calculated from segments of the time series 
corresponding to the 5th to 10th and 85th to 95th percentiles, respectively, to capture potential 
trend changes from the beginning to the end of the curve. The indication of inconsistent tilt values 
is based on the application of the z-score method, which uses statistical standardization and a 
predefined threshold to detect significant deviations from expected behavior (MONTGOMERY & 
RUNGER, 2018). The results of this analysis are not considered in the automatic identification of 
anomalous equipment, since unusual tilt values are more often related to deployment 
characteristics rather than equipment malfunction. 

 

Figure 2 – Variations in equipment tilt and rotation over time for normal and anomalous nodes. The 
intervals from the 5th to the 10th and from the 85th to the 95th percentiles for elapsed time are identified 
by (1) and (2), respectively. 

2.3 Amplitude Spectrum Analysis  

This analysis compares the frequency domain amplitude spectra of the three node measurement 
components. These measurements are performed by geophones arranged in a Galperin 
configuration, whose main advantage is that they provide identical responses for all components. 
Significant deviations in these measurements may indicate coupling problems or equipment 
malfunction. 

To evaluate the similarity between the amplitude spectra of the components, each was considered 
a Power Spectral Density (PSD) function and treated as a probability distribution. The Jensen-
Shannon divergence was then applied to these functions. This metric, a symmetric and smoothed 

Figure 1 - The graph shows the voltage 
decay over time of a normal node (blue) 
and an anomalous one (red). 



 

 

  

 

 

 

 
 

   SBGf Conference Rio’25   |   rio25@sbgf.org.br          p. 3 / 4 

 

 

version of the Kullback-Leibler divergence (KULLBACK & LEIBLER, 1951), quantifies the 
difference between a pair of probability density curves. This technique was chosen based on three 
factors: stability and robustness. Additionally, the sum of pairwise divergences was used as an 
extra indicator for anomalous responses 

To increase classification accuracy and 
reduce false negatives, a threshold value 
was introduced for the sum of the 
divergence coefficients between a pair of 
components. This threshold was 
determined empirically based on the 
exploratory data analysis and the 
experience of the analyzing technician. 
Divergence values above this threshold 
indicate loss of similarity between the 
amplitude spectra in at least one of the 
components. 

3 Results 

The experiment was conducted using three types of data from 2,479 nodes. These nodes were 
acquired during operational campaigns and represent approximately 15% of the total available 
data sets. The data were processed by automated routines developed to identify anomalous 
patterns. The validation dataset contained labels previously defined based on manual inspections 
and field records. Of these, five nodes exhibited battery-related failures, and one showed 
amplitude spectral inconsistency, attributed to a malfunction in at least one component, totaling 
six anomalous nodes. 

As a result of applying the methodology, all six anomalous nodes were correctly identified, 
demonstrating the routine's ability to detect actual failures. Among the nodes considered normal, 
2,470 were correctly classified, while three were mistakenly identified as anomalous. The 
classification decision considered a node anomalous if it exhibited issues in at least one of the 
two analyses: battery voltage decay or amplitude spectrum. Table 1 presents the relationship 
between genuinely anomalous and normal nodes, and those predicted as such or not.  

To verify the effectiveness of the results, Figure 4 presents three representative cases from the 
validation dataset: one false negative, a genuinely anomalous node that was not recognized as 
such, based on battery voltage decay; and two true negatives, genuinely anomalous nodes that 
were correctly identified, one based on the amplitude spectrum and the other on battery voltage 
decay.  

 

 

 

 

 

Tabela 1 – Model classification performance, 
where G and P indicate genuinely and predicted 
classes, respectively. 

 

 

 Normal (P) Anomalous (P) 

Normal (G) 2470 3 

Anomalous (G) 0 6 

Figure 3 - Amplitude spectrum of anomalous (left) and normal 
(right) nodes. 

Figure 4 – A false negative on the left and a true negative in the 
middle, both based on the battery voltage decay, and a true 
negative based on the amplitude spectrum on the right. 
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Additionally, Figure 5 shows graphical representations of decision-making analysis. These figures 
provide a comprehensive visual understanding of node behavior for each analyzed characteristic 
and how the integration of both analyses enhances the robustness of the final classification. 

 

Figure 5 - The classification based on battery voltage decay (left) uses purple dots for anomalous nodes 
and yellow dots for normal nodes. In contrast, the classification for the amplitude spectrum (right) 
represents anomalous nodes with red dots and normal nodes with blue dots. The black traced line on the 
first graph and the red dotted line on the right graph indicate the classification thresholds. 

4 Conclusions 

This study introduced a methodology to automate the quality control process for seismic nodes. 
The approach focused on analyzing battery voltage decay, equipment tilt, and the spectral 
consistency of geophone signals. For validation, we conducted numerical experiments using real-
world data from 2,479 nodes acquired during operational campaigns, which represented 
approximately 15% of the total available data.  

The results demonstrate that the proposed methodology successfully achieved its objectives. It 
mitigated the limitations of subjective evaluations by objectively defining classification thresholds 
directly through the model. Furthermore, the approach maintained high levels of accuracy and 
reliability, correctly identifying 99% of the nodes during validation, with a minimal occurrence of 
erroneous classifications. The methodology also proved to be operationally efficient: the 
validation dataset was analyzed in approximately three hours, a significant contrast to the current 
manual process, which assesses about 10 nodes per day in the operational workflow. 

Currently, we are expanding the methodology to include additional quality control processes not 
addressed in this study, such as the analysis of clock drift in the equipment's internal timing 
systems. Automating this step is expected to complement the analyses already implemented, 
contributing to a more comprehensive and robust system for the operational validation of seismic 
nodes.   
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