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Abstract
Seismic frequency responses can be computed by solving the wave equation in the frequency do-
main or by Fourier transforming time-domain wavefields. While the frequency-domain approach re-
quires solving large sparse systems — computationally expensive at high frequencies — explicit time
integration offers an alternative, though traditional Taylor-based expansions suffer from instability at
large time steps. To overcome this, we adopt the Rapid Expansion Method (REM) with Chebyshev
polynomials for a more stable and accurate solution for second-order time integration. We propose
a novel strategy that directly retrieves frequency components from Chebyshev coefficients using an
analytical Fourier representation based on Bessel functions. This enables precomputation of all
desired frequencies, reducing computational cost. Numerical tests show excellent agreement with
conventional time-domain results and demonstrate the method’s applicability in seismic migration.

Introduction
Computational solvers for the Helmholtz equation are crucial in seismology, acoustics and other
wave-based fields, particularly for single-frequency modeling in seismic inversion. Frequency-domain
Full-Waveform Inversion (FWI) (Tarantola, 1984) is often favored for its computational efficiency, re-
quiring fewer frequencies for inversion. However, solving large sparse systems in complex media
remains a significant challenge. Direct solvers, while allowing factor reuse, demand substantial
memory. Iterative methods offer better scalability but are prone to convergence issues, especially
at high frequencies (Plessix, 2007). Alternatively, frequency responses can be obtained via Dis-
crete Fourier Transform (DFT) of time-domain wavefields using explicit schemes. Standard low-
order Finite-Difference (FD) time integration often causes dispersion errors with high-order spatial
schemes, requiring small time steps and increasing computational costs. The Rapid Expansion
Method (REM) (Kosloff et al., 1989) improves time extrapolation by expanding the wavefield in Cheby-
shev polynomials, effectively eliminating dispersion with sufficient terms. Comparisons confirm its
superiority over second-order truncated Taylor series expansions (Pestana and Stoffa, 2010).

Another frequency response modeling technique uses the running summation algorithm (Chu
and Stoffa, 2012), applying REM to temporal derivatives and the pseudospectral method for spatial
derivatives. Since REM optimally solves second-order wave equations using Chebyshev polynomi-
als (Pestana and Stoffa, 2010), applying a DFT to the REM-computed time-domain wavefield yields
a frequency-domain formulation with modified summation coefficients. These coefficients are the
DFT of the time-domain expansion terms, enabling direct frequency response computation from the
Chebyshev polynomial expansion, bypassing discrete time snapshots (Chu and Stoffa, 2012). In
this work, we introduce a novel REM-based frequency response modeling approach. Unlike the ap-
proach proposed by Chu and Stoffa (2012), which derives summation coefficients from the Fourier
transform of a convolution involving the Bessel function and the source wavelet, we analytically ob-
tain them from the transform of the Bessel function alone. We describe a forward-modeling solver for
the acoustic wave equation using a modified Chebyshev expansion with Bessel-function time depen-
dence, leading to an efficient REM-based frequency response formulation. Numerical experiments
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validate the proposed method, demonstrating its effectiveness in seismic imaging.

Theory
The REM, based on Chebyshev expansions, provides efficient time integration for second-order wave
equations, such as the constant-density acoustic wave equation

∂2P (x, t)

∂t2
= −L2P (x, t) + f(x, t), with L2 = −c2

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
, (1)

where x = (x, y, z), t is time, c = c(x) is the velocity, P (x, t) is the pressure wavefield, and f(x, t)
denotes the source term. Applying the Fourier transform to Eq. 1 yields P (x, ω) = G(x, ω)f(x, ω),
where G(x, ω) = 1/

(
L2 − ω2

)
is the frequency-domain Green’s function. The corresponding time-

domain expression, obtained via the residue theorem, is G(x, t) = sin(Lt)/L. If the source term is
separable as f(x, t) = g(x)s(t), then the solution to Eq. 1 becomes (Kosloff et al., 1989)

P (x, t) = H(x, t) ∗ s(t), with H(x, t) =
sin(Lt)

L
g(x). (2)

Using a modified Chebyshev expansion of the sine function, H(x, t) is approximated as

H(x, t) =
1

R

∞∑
k=0

J2k+1(tR)
R

iL
Q2k+1

(
iL

R

)
g(x), (3)

where J2k+1 are odd-order Bessel functions, and Q2k+1 are modified Chebyshev polynomials de-
fined by the recurrence Q2k+1(ξ) = 2

[
1 + 2ξ2

]
Q2k−1(ξ) − Q2k−3(ξ), with Q1(ξ) = ξ, Q3(ξ) =

3ξ+4ξ3, and ξ = iL/R. The scalar R, exceeding the eigenvalue range of L, approximated in 2D by
R ≈ πcmax

√
(1/∆x)2 + (1/∆z)2, and the condition M > tR, using only odd terms for convergence

(Tal-Ezer et al., 1987), are crucial for the method.
From Eq. 2, the frequency-domain pressure wavefield is P (x, ω) = H(x, ω)s(ω). To compute

this, we apply a Fourier transform to Eq. 3. which only affects the Bessel functions, resulting in

H(x, ω) =
1

R

∞∑
k=0

B2k+1(ω)
R

iL
Q2k+1

(
iL

R

)
g(x), (4)

where B2k+1(ω) is the temporal Fourier transform of J2k+1(tR), given by

B2k+1(ω) =
1

R

e−i[(2k+1) sin−1(ω/R)]√
1− (ω/R)

2
if |ω/R| < 1, and zero otherwise. (5)

With Eq. 4, we obtain the expression for the frequency-domain response, given by

P (x, ω) =
1

R

M∑
k=0

s(ω)B2k+1(ω) Ω2k+1(x), with Ω2k+1(x) =
R

iL
Q2k+1

(
iL

R

)
g(x). (6)

Based on the Chebyshev recurrence and initial values, the polynomial terms are computed via the
recurrence Ω2k+1(x) = 2

[
1 + 2

(
−L2/R2

)]
Ω2k−1(x) − Ω2k−3(x), initiated by Ω1(x) = g(x) and

Ω3(x) =
[
3 + 4

(
−L2/R2

)]
g(x). Although Ω2k+1 contains 1/iL, the recurrence only envolves −L2

(evaluated once per term), which dominates the cost in Eq. 6. Our f-REM computes B2k+1(ω)
analytically (Eq. 5) for each frequency and odd index, multiplying it by the precomputed, frequency-
independent Ω2k+1(x). The wavefield P (x, ω) is the sum of M/2 odd terms in Eq. 6. This method,
unlike conventional frequency-domain modeling, decouples spatial discretization, allows multi-source
encoding across frequencies, and extends to complex media without restrictive assumptions.

As an application of f-REM-derived frequency responses, we employ the linear modeling based
on the Born approximation (Yao and Jakubowicz, 2016). The scattered wavefield is d = Lm, where
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L is the discretized modeling operator and m the reflectivity model. Each matrix element is given by
lij =

ω2

c20(xj)
s(ω)G0(xj , ω;xs)G0(xj , ω;xri), with xj denoting the j-th grid point, xs the source loca-

tion, and xri the i-th receiver. Migration uses the adjoint operator, and a balanced image is obtained
via diagonal Hessian preconditioning: mmig = (H0 + λI)−1LTdobs, where H0 = diag{LTL}.
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Figure 1: Real part of frequency response: (a) analytic solution, (b) f-REM. Time-domain snapshots:
(d) analytic solution, (e) f-REM. Normalized amplitude trace comparison (z = 400m): (c) frequency-
domain responses, (f) time-domain snapshots.

Results
We evaluated our f-REM method by computing frequency responses for two velocity models of in-
creasing complexity. To validate the frequency-domain results, we applied an inverse Fourier trans-
form and compared them with time-domain REM wavefields. A 12th-order finite-difference scheme
was used for the Laplacian operator, and absorbing boundary conditions were applied.

Initially, we tested f-REM on a homogeneous 2D isotropic model (201 × 201 grid points, velocity
2000m/s). Using a 30Hz Ricker wavelet with a source at xs = (500, 500)m, the f-REM frequency
responses showed excellent agreement with the analytic solution (Figures 1(a)-(b)). The normalized
cross-correlation (NCC) value was 0.998. A trace comparison is provided in Figure 1(c). After inverse
Fourier transform, the time-domain wavefields at t = 0.18 s (Figures 1(d)-(e)) also exhibited high
similarity (NCC = 0.997), further confirmed by seismic trace comparison (Figure 1(f)). Next, we
applied f-REM to the complex Marmousi model (369 × 375 samples and spatial sampling of 25m
in x and 8m in z). A 9Hz Ricker wavelet was injected at xs = (4600, 0)m, and the resulting time-
domain wavefields were compared with REM. The real and imaginary parts of the 9.5Hz frequency
responses are shown in Figures 2(c)-(d), while time-domain snapshots (Figures 2(e)-(f)) displayed
strong agreement (NCC = 0.999), as seen in Figure 2(h). Furthermore, we applied f-REM for adjoint
migration, using 190 frequencies from 0.167Hz to 31.5Hz. The resulting high-quality migrated image
(Figure 2(g)) demonstrates f-REM’s capability in complex seismic modeling.

The numerical results validate the proposed f-REM method for efficient frequency-domain seismic
modeling. By eliminating time-marching and requiring minimal memory (O(nx, nz)), it demonstrates
scalability for large, high-frequency problems and straightforward 3D extension. While a Laplacian
operator was used spatially, a pseudospectral approach could further enhance performance, partic-
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ularly in 2D. The high-quality migrated image derived from the frequency responses further confirms
the method’s effectiveness.
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Figure 2: (a) Marmousi P-wave velocity model and (b) background model. f-REM 9.5Hz frequency
responses: (c) real part, (d) imaginary part. Time-domain snapshots: (e) REM, (f) f-REM. (g) Mi-
grated image. (h) Normalized amplitude trace comparison (z = 1600m).

Conclusions
We proposed a new REM-based method for frequency response modeling in the frequency-space
domain. By analytically transforming the Bessel function, we derive frequency-domain Chebyshev
coefficients, allowing efficient multi-frequency computation. Validated for accuracy and efficiency on
synthetic data, its successful application in seismic imaging underscores its potential as a flexible tool
for seismic modeling and waveform inversion, with natural extensions to 3D and anisotropic media.
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