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Abstract

Seismic data from passive sources is generally very noisy, with weak sporadic signals of
interest obscured by noise. One crucial and difficult task when dealing with such data is improving
the signal-to-noise ratio without distorting the signal of interest. Dictionary learning (DL), which is
highly effective due to its capability for sparse representation, has already been applied to passive
seismic data. One of the challenges of applying DL is finding the optimal configuration of parameters
for an effective and efficient solution of the problem. This work aims to determine the optimal
parameters for applying the K-SVD and SGK dictionary learning algorithms, which commonly use
Discrete Cosine Transform (DCT) starting dictionary. Specifically, the aim is to create a dictionary
from the input data itself and, mainly, to create a new dictionary with atoms that represent a local
approximation of passive seismic events. The initial tests were performed using synthetic data
containing two passive seismic sources. Both DL algorithms (K-SVD and SGK) were applied to this
data by using a starting dictionary created from the data itself. Both algorithms were able to attenuate
the noise and enhance diffraction events from data with the highest signal-to-noise ratio (SNR). In
data with a very low SNR, both algorithms still produced good quality results. Tests are ongoing to
implement a kinematically constrained DL algorithm.

Introduction

Passive seismic surveys have many applications in natural resource exploration and
engineering, and their success depends on the correct selection and use of the monitoring
equipment. Studies of monitoring hydrocarbon production can be used to identify changes in
subsurface reservoir fluids and stress behaviour, and to locate areas where the fluids are moving
during production. For weak seismic sources, such as those of passive seismic applications,
denoising and reconstruction are crucial processing steps to enhance passive seismic signals (Chen
et al., 2023). To identify, denoise and enhance seismic signals, different methods are driven to solve
this problem. A dictionary learning (DL) method is based on atoms that are small patches learned
from the data itself, which can be combined to represent the original signal more clearly and sparsely
(Aharon et al., 2006).

Sparse representation has been used for nearly two decades to enhance seismic data.
However, these methods often rely on fixed-basis, predefined dictionaries, which can be too rigid
and may not always ensure a truly sparse representation. To address this limitation, DL offers a
data-driven solution that adapts the dictionary to better satisfy the sparsity condition (Wang et al.,
2021). Among the most widely used DL algorithms are K-Singular Value Decomposition (K-SVD)
and Sequential Generalized K-means (SGK) (Wang et al., 2021; Chen et al., 2023).

One of the main challenges of DL methods is determining the optimal configuration of
parameters to effectively solve tasks and maximize the performance while reducing computational
cost. This involves factors such as the number and size of atoms, superposition of data patches,
and others specific to the algorithms (K-SVD and SGK). The objective of this work is to investigate
efficient strategies for determining the optimal parameters of the K-SVD and SGK algorithms, and,
more importantly, to introduce new dictionaries in order to increase their ability to attenuate noise
and enhance coherent events from noisy seismic data. We will introduce a new type of dictionary in
which the atoms represent local approximations of passive seismic events, i.e. we will implement a
kinematically constrained DL algorithm. This work presents the initial results of applying the SKG
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and KSVD algorithms to synthetic data simulating a passive seismic monitoring study of a
hydrocarbon reservoir.

Method

Dictionary Learning (DL), learns a set of simple structures (atoms of the dictionary) that,
when combined, can represent complex seismic waves. By representing seismic waves with these
atoms, it is possible to reduce the complexity of the data without losing important information, hence
facilitating the analysis. The DL method is applied in two steps, the first one is called sparse coding
which uses a predefined dictionary as sparse representation. The second step is called dictionary
update, in this step the atoms from the dictionary are updated. There are several methods for the
dictionary update step, we used the DL methods K-SVD and SGK in this work. According to Chen
et al. (2023) K-SVD is robust and accurate and SGK is very efficient.

The K-SVD (Aharon et al., 2006) is one of the most widely used DL algorithms, where the
atoms are updated individually using singular value decomposition and orthogonal matching pursuit
operations, resulting in a high computational cost. The SGK method introduced by Chen (2020) is a
faster alternative that updates the atoms by taking the arithmetic average of the training signals
related to each atom.

Each learned atom can represent a redundant seismic pattern in the dataset. However,
without any additional constraints during the dictionary update step, noise or spurious events may
also be included in it, which may lead to unsatisfactory results. One way to minimize this issue in
streamer data is by using an initial dictionary based on the data itself and constraining the learning
to possible surface seismic events (Turquais et al., 2018). In this study, we present preliminary
results using an initial dictionary extracted from the data itself and as ongoing research work, the
atoms of the dictionary will be constrained to obey the kinematic parameters of passive seismic
events.

Results

The synthetic velocity model shown in Figure 1 was built using geological information from
the Parnaiba Basin, located in the north-eastern region of Brazil. It was used as a base for
elaborating the synthetic passive seismic signal. Geologically speaking it is mainly composed of
horizontal layers of sedimentary rocks, with diabase sills that have intruded the sedimetary layers in
different levels, thus having the form of apparent folds, as represented with the red band or stripe
between 1350 m and 1950 m deep. This diabase sill acts as a sealing rock for natural gas
accumulations in sandstone reservoir rocks that occur below the sill. This type of reservoir in the
Parnaiba Basin is also being studied for CO2 storage due to its favorable geological features for this
activity.
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Figure 1: Velocity model inspired by a gas reservoir in the Parnaiba Basin, northeastern Brazil.
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We generated synthetic data for two sources located at the base of the diabase sill, using a
finite difference numerical scheme to solve the acoustic wave equation. That is, the sources are
positioned below the fold-like structure in the central part of the model at the following coordinates:
x1=4,280 m, z1 = 1,550 m, x2 = 5,950 m, z2 = 1,590 m. The data has 500 traces, each with an
interval of 25 m, covering the entire surface of the model. The time sample is 2 ms and the record
length is 2 seconds.

The parameters of the dictionary are: Number of atoms (K), size of atoms (L1, L2) and
superposition of data patches (S1, S2). In addition, the parameters of the K-SVD and SGK
algorithms are: Number of iterations (Niter) and Sparsity level (T). We used for this synthetic data
two noise levels, the first with -11.18 dB and the second with —=17.20 dB. For both tests we used the
same parameters set: S1 =1; S2 = 1; T = 6; Niter = 10. Figure 2 shows the initial and learned
dictionaries for the test with SNR =-11.18 dB.

The results presented in Figure 3 were obtained using the parameters K = 32, L1 = 32 and
L2 = 8 for SNR =-11.18 dB. Figure 4 are the results using the parameters K=32,L1=32and L2 =
16 for SNR = -17.41 dB. In both figures, panels a) and b) show the reference data and the noisy
data, c) and d) show the results of K-SVD and SGK algorithms and e) and f) show the errors of both
methods in relation to the reference data a), respectively. We can observe that random noise has
been effectively removed.
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Figure 2: The initial dictionary was created based on the data itself (a) and the learned dictionaries
for K-SVD (b) and SGK (c) methods. The parameters are: K=32, L1 =32 and L2 = 8.
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Figure 3: Comparison of 2D passive seismic data denoising. (a) Clean data. (b) Noisy data (SNR =
-11.18 dB). (c) Denoising data using KSVD (SNR = 12.41 dB). (d) Denoising data using SGK (SNR
=13.48 dB). (e) KSVD denoising error. (f) SGK denoising error. K=32,L1=32and L2 =8.
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Figure 4: Comparison of 2D passive seismic data denoising. (a) Clean data. (b) Noisy data (SNR =
-17.20 dB). (c) Denoising data using KSVD (SNR = 8.36 dB). (d) Denoising data using SGK (SNR
=9.42 dB). (e) KSVD denoising error. (f) SGK denoising error. K=32,L1=32and L2 = 16.

Conclusion

We present the preliminary results of the successful application of the K-SVD and SGK
dictionary learning methods to very noisy synthetic data representing seismic data from passive
sources. We applied both algorithms using initial dictionaries extracted from the data itself. The
results were quite satisfactory in both tests, which demonstrates the great potential of these DL
algorithms for removing random noise and enhancing the signal of interest in seismic data from
passive sources. The results confirm that SGK is much faster than K-SVD. Ongoing tests are being
performed on constrained dictionary learning using kinematic parameters associated with passive
seismic events in order to facilitate the identification and enhance these types of events.
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