
See this and other abstracts on our website: https://home.sbgf.org.br/Pages/resumos.php

Submission code: 409JXNWAZ7

Solving Seismic Wave Equations with Astaroth
library

Oscar Mojica (Supercomputing Center for Industrial Innovation; SENAI CIMATEC), Leonildes

Soares de Melo Filho (Repsol Sinopec Brasil)

Solving Seismic Wave Equations with Astaroth library

Copyright 2025, SBGf - Sociedade Brasileira de Geofı́sica / Society of Exploration Geophysicist.

This paper was prepared for presentation during the 19th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November

2025. Contents of this paper were reviewed by the Technical Committee of the 19th International Congress of the Brazilian Geophysical Society and do not necessarily

represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written

consent of the Brazilian Geophysical Society is prohibited.

Abstract Summary

Seismic modeling is fundamental to exploration seismology, supporting essential tasks like data
acquisition, processing, and reservoir characterization. However, simulating wave propagation by
solving the wave equation is computationally demanding, often slowing research progress when re-
lying on traditional CPU-based implementations. Although GPU implementations provide a pathway
to faster computations, GPU programming remains inherently complex and time-consuming. In this
work, we explore Astaroth, a framework that streamlines this process through GPU-accelerated code
generation, facilitating the development of high-performance applications for solving partial differen-
tial equations (PDEs) with optimized stencil code on GPUs. Through a case study, we illustrate how
Astaroth supports the rapid development of a seismic forward modeling application.

Introduction

High-Performance Computing (HPC) plays a pivotal role in addressing the computational challenges
of modern scientific simulations, particularly in exploration seismology, where accurate 3D wave
modeling is essential for subsurface imaging and resource exploration. These simulations are com-
putationally intensive, requiring significant processing power to model wave interactions over large
domains and extended time periods. To meet these demands, writing high-performance GPU code
is essential, yet it often increases development costs due to the complexity of GPU programming.
One effective solution is automatic code generation, which allows geoscientists to focus on domain-
specific problem descriptions while the underlying framework generates optimized low-level code. A
leading example of such a framework is Devito (Louboutin et al., 2017), a Python-based domain-
specific language (DSL) for finite difference computations, offering symbolic PDEs definitions, auto-
mated code generation, and optimizations for CPU and GPU platforms.

Building on this approach, we explore Astaroth (Pekkilä, 2019; Pekkilä et al., 2025), a library that
uses the DSL paradigm to ease the efficient automated creation of high-performance GPU code.
Astaroth offers an application programming interface (API) for accessing GPU resources, a DSL
for creating stencil kernels, and a compiler that translates programs written in this DSL into highly
optimized CUDA/HIP kernels. By automating the generation of efficient CUDA/HIP code, Astaroth
simplifies GPU programming for geoscientists and provides stencil kernels that maximize GPU cache
utilization. This makes it an attractive tool for geoscientists tackling large-scale 3D wave modeling,
enabling them to achieve high performance without the burden of low-level optimization.

Astaroth’s DSL

Astaroth’s DSL simplifies writing efficient stencil operation kernels using a procedural style and a
dataflow model that aligns with graphics pipelines, leveraging GPU parallel processing. It focuses

SBGf Conference Rio’25 | rio25@sbgf.org.br p. 1/4

on writing GPU programs, excluding external memory management, and uses a C/C++-like syntax
with new keywords (i.e, Kernel, Stencil, etc) to translate high-level stencil pipelines into optimized
CUDA/HIP kernels. Users define a Stencil explicitly, which is then converted into a function that
can be utilized within kernels. By restricting read operations to these predefined stencils, Astaroth
generates highly optimized code. A Field is stored in vertex buffers (dual “in” and “out” arrays),
where values are read from “in” and written to “out” for performance reasons. The input and output
buffers can be accessed using using FIELD_IN and FIELD_OUT. The DSL provide the current vertex’s
position with a built-in variable called vertexIdx, a type with three integers (int3). Arrays can
be accessed without choosing an index; it then uses vertexIdx’s x, y, z values by default. For
additional details on the DSL and API (not discussed here), we direct readers to Pekkilä (2019) and
the Bitbucket repository (https://bitbucket.org/jpekkila/astaroth/src/master/).

Experiments

While Astaroth was originally designed to solve the standard set of PDEs for magnetohydrodynamics
(MHD) simulations, we demonstrate here that, with certain tweaks and adaptations, it can be utilized
to efficiently compute solutions for the second-order acoustic wave equation:

m∂ttu−∆u = f, (1)

where ∂tt means the second partial derivative with respect to the time, m(x) = 1/v2(x) at x =
(x, y, z), u is the pressure field, ∆ is the Laplacian operator and f is a source of acoustic energy.
We solve Eq. 1 using an homogeneous model (v=1.5 km/s), which is discretized into 256×256×256
grid points with a 10 m grid interval. We use a Ricker wavelet (10 Hz peak) as the source and place
one shot at the model’s center. Listing 1 show how the wave equation may be solved with the DSL.

1 i n t AC step number
2 i n t 3 AC src pos
3 r e a l AC two
4 hos tde f ine STENCIL ORDER (8) / / max order used here
5 F ie l d u , sq ve l , s rc
6
7 S t e n c i l lap lace3d ord4 {
8 [0] [0] [0] = 1
9 , [0] [0] [− 2] = 1

10 , [0] [0] [− 1] = 1
11 , [0] [0] [1] = 1
12 , [0] [0] [2] = 1
13 , [0] [− 2] [0] = 1
14 , [0] [− 1] [0] = 1
15 , [0] [1] [0] = 1
16 , [0] [2] [0] = 1
17 , [− 2] [0] [0] = 1
18 , [− 1] [0] [0] = 1
19 , [1] [0] [0] = 1
20 , [2] [0] [0] = 1
21 }
22 Kernel solve3d ord4 () {
23 f o rce = r e a l (0)
24
25 i f ve r tex Idx . x == AC src pos . x && ve r tex Idx . y == AC src pos . y && ve r tex Idx . z == AC src pos . z {
26 f o rce = FIELD IN [src] [AC step number]
27 }
28
29 w r i t e (u , (AC two * FIELD IN [u] [IDX (ve r tex Idx . x , ve r tex Idx . y , ve r tex Idx . z)] +
30 FIELD IN [sq ve l] [IDX (ve r tex Idx . x , ve r tex Idx . y , ve r tex Idx . z)] * lap lace3d ord4 (u) −
31 prev ious (u)) + fo rce)
32 }

Listing 1: Example of Astaroth DSL Code for solving the scalar wave equation using 4th order FD.
Stencil coefficients are set at runtime.

SBGf Conference Rio’25 | rio25@sbgf.org.br p. 2/4

https://bitbucket.org/jpekkila/astaroth/src/master/

Within the DSL, the functions previous and write are used to manage field updates. The
previous function accesses elements in the “out” buffer, enabling retrieval of a field’s previous state,
while the write function stores the computed result in the “out” buffer. In the current version of the
DSL, handling 1D arrays directly isn’t fully supported. As a workaround, we use standard 3D fields
accessed via FIELD_IN. Since v2 (sq_vel) is only read, its “out” buffer remains unused, leading
to more memory usage than necessary. Similarly, mapping 1D arrays as the source f into a 3D
field results in additional memory consumption. This is illustrated in Fig. 1-a, where the gray color
represents the unused extra memory.

Figure 1: a) Illustrative scheme of the Fields used in wave modeling (see Listing 1). The labels
AC mx, AC my, and AC mz denote the total number of cells in the computational domain along the x-,
y-, and z-axes, respectively, including halo cells.

We use a hardware-managed caching (HWC) strategy included in Astaroth for data reuse (Pekkilä
et al., 2025). We benchmarked the time to compute the wave equation using second- to eighth-order
finite differences (FD), i.e., radius 1 to 4 stencils, with PyTorch and Astaroth. Adapting wave modeling
to use tensors, a fundamental data structure in machine learning, has become a common practice
due to the availability of optimized machine learning libraries that leverage GPU acceleration for
tensor operations. This led us to choose PyTorch for performance comparisons. In the benchmarks,
we measured the median running time of 100 iterations. Fig. 2-left displays the wavefield after 100
time steps of wave propagation simulation at at xy plane (z=1.28 Km), while Fig. 2-right shows
the time per step for computing the wave equation with Astaroth (double and single precision) and
Pytorch (single precision).

Conclusions

We introduced the Astaroth framework as an effective tool for developing 3D FD seismic wave propa-
gation codes that leverage the high-performance computing capabilities of GPUs. Astaroth employs
multiple optimization strategies to enhance the performance of stencil computations on GPUs. Nu-
merical experiments using a synthetic 3D model confirm that Astaroth is both feasible and practical
for solving the wave equation efficiently.

SBGf Conference Rio’25 | rio25@sbgf.org.br p. 3/4

Figure 2: (Left) Snapshot of the wavefield at the final time step on the xy plane (z=1.28 Km). (Right)
Time per step for solving the wave equation using Astaroth (single and double precision) and PyTorch
(single precision) on a single NVIDIA V100 GPU. Lower is better.

Acknowledgements

The authors would like to thank Repsol Sinopec Brasil for supporting this research under the “Siren
Project” agreement, in accordance with the regulations of the National Agency of Petroleum, Natural
Gas, and Biofuels (ANP) RD&I levy fund.

References

Louboutin, M., P. Witte, M. Lange, N. Kukreja, F. Luporini, G. Gorman, and F. J. Herrmann, 2017,
Full-waveform inversion, part 1: Forward modeling: The Leading Edge, 36, 1033–1036.

Pekkilä, J., 2019, Astaroth: A library for stencil computations on graphics processing units: Master’s
thesis, Aalto University School of Science.

Pekkilä, J., O. Lappi, F. Robertsén, and M. J. Korpi-Lagg, 2025, Stencil computations on amd and
nvidia graphics processors: Performance and tuning strategies: Concurrency and Computation:
Practice and Experience, 37, e70129.

SBGf Conference Rio’25 | rio25@sbgf.org.br p. 4/4

