

SBGf Conference

18-20 NOV | Rio'25

Sustainable Geophysics at the Service of Society

In a world of energy diversification and social justice

Submission code: 46NVZA9P6L

See this and other abstracts on our website: <https://home.sbgf.org.br/Pages/resumos.php>

Unifying grain shape effects in granular flows down a rough incline

LU JING

Unifying grain shape effects in granular flows down a rough incline

Lu Jing^{1*}, Jixiong Liu¹, Thomas Pähzt²

¹ Tsinghua Shenzhen International Graduate School, Tsinghua University, China

² Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, China

*Corresponding author: lujing@sz.tsinghua.edu.cn

Abstract

Granular materials in nature are nearly always non-spherical, but particle shape effects in granular flow remain largely elusive. Here we use the discrete element method (DEM) to simulate dense granular flows down a rough incline with varying microscopic parameters and particle shapes. For each particle type, we vary the flow thickness h and slope angle θ to extract the $h_{\text{stop}}(\theta)$ curves (below which flow ceases) and the $Fr = h/h_{\text{stop}}$ relations following Pouliquen's approach [1], where $Fr = u/\sqrt{gh}$ is the Froude number, u is the mean flow velocity, and g is the gravitational acceleration. For microscopic parameters, we find that the friction coefficient (μ_s) has a significant impact on the flow, saturating at around $\mu_s = 0.5$, for spherical and non-spherical particles. Other parameters (particle stiffness with linear and Hertz models, Poisson's ratio, and restitution coefficient) have a minor influence. For non-spherical particles, we first focus on the particle length-to-diameter aspect ratios (AR). The $Fr-h/h_{\text{stop}}$ curves show an intriguing nonlinear dependence on AR, with two plateaus at small and large AR, respectively [2]. Similar behaviors are observed for other particle shapes (flatness and angularity), indicating that Pouliquen's flow rule is not universal across granular materials. Finally, we show that a recent velocity scaling [3] based on a shear stress argument can collapse data for all flow conditions and particle shapes, including cubes, pyramids, elongated particles, flat particles, and realistic sand-shaped particles, which represents a promising grain-shape-unifying flow rule for granular avalanches.

References

- [1] Pouliquen O. Scaling laws in granular flows down rough inclined planes. *Physics of Fluids*, 1999, 11(3): 542-548.
- [2] Liu J, Jing L, Pähzt T, et al. Effects of particle elongation on dense granular flows down a rough inclined plane. *Physical Review E*, 2024, 110(4): 044902.
- [3] Wu Y, Pähzt T, Guo Z, Jing L, et al. Unified flow rule of undeveloped and fully developed dense granular flows down rough inclines. *Physical Review Letters*, 2025, 134(2): 028201.