
See this and other abstracts on our website: https://home.sbgf.org.br/Pages/resumos.php

Submission code: 4NDDVK9PNL

U-Net-Based Segmentation of Magnetic Lineaments:
Application to Aerogeophysical Data

Saulo Santos, Daniel Leal Souza (Postdoc), Saulo S. Martins (UFPA)



U-Net-Based Segmentation of Magnetic Lineaments: Application to
Aerogeophysical Data

Copyright 2025, SBGf - Sociedade Brasileira de Geofı́sica / Society of Exploration Geophysicist.

This paper was prepared for presentation during the 19th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November

2025. Contents of this paper were reviewed by the Technical Committee of the 19th International Congress of the Brazilian Geophysical Society and do not necessarily

represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written

consent of the Brazilian Geophysical Society is prohibited.

Abstract

This study applies a convolutional neural network (CNN) based on the U-Net architecture for automat-
ically segmenting geological lineaments in aeromagnetic data. The model was trained using 11,914
synthetic image–mask pairs generated from simulated magnetic anomalies representing lineaments
and fault zones. Data augmentation techniques improved model generalization. Real aeromagnetic
data from the Rio Maria Project (SGB/CPRM 1129) were used for validation. The model achieved
a validation accuracy of approximately 94%, effectively detecting linear magnetic features with high
spatial continuity and robustness, even under noisy conditions. The results demonstrate that deep
learning techniques are promising tools for automating structural mapping in geophysical data, with
potential applications in mineral exploration and geological interpretation.

Introduction

Deep learning (DL) techniques (Bengio et al. (2009); Goodfellow et al. (2016); LeCun et al. (2015)),
particularly convolutional neural networks (CNNs), have become powerful tools in automating geo-
physical data interpretation. In aeromagnetic surveys, detecting lineaments and fault zones is crucial
for structural geological analysis and mineral exploration. However, traditional manual interpretation
is time-consuming, subjective, and prone to inconsistencies.

Recent research has demonstrated the effectiveness of CNNs for geological feature extraction
in geophysical datasets. Architectures like U-Net, initially designed for biomedical imaging, have
been successfully adapted for seismic fault detection (Dou et al., 2022; Tang et al., 2023) and aero-
magnetic lineament mapping (Lee et al., 2012; Naprstek and Smith, 2022). These models leverage
encoder–decoder structures with skip connections to balance global context with local feature preser-
vation, making them highly effective for linear feature segmentation.

This study proposes a U-Net-based CNN framework trained on synthetic aeromagnetic datasets
to automate lineament detection. The model is evaluated on real aeromagnetic data from the Rio
Maria Project (SGB/CPRM 1129), aiming to improve the efficiency and consistency of structural
mapping for geological and mineral exploration applications.

Materials and Methods

This study employed 37 synthetic aeromagnetic images generated using the GravMag Prism soft-
ware (Bongiolo et al., 2013), simulating magnetic anomalies caused by geological lineaments and
fault zones with varying geometries, orientations, and noise levels to represent diverse geological
settings.

Data augmentation techniques such as rotation, mirroring, and subdivision into smaller patches
were applied to improve model generalization. Each original image yielded 322 variants, totaling
11,914 image–mask pairs for training and validation.
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For independent testing, real aeromagnetic images from the SGB/CPRM 1129 – Projeto Aero-
geofı́sico Rio Maria (Costa et al., 2016) were used. These were extracted from the geological–geophysical
map of the Carajás Mineral Province, with manually interpreted structural lineaments serving as ref-
erence masks.

The deep learning model is based on the U-Net architecture, known for its effectiveness in image
segmentation in medical and geophysical applications (Dou et al., 2022; Tang et al., 2023). It adopts
an encoder–decoder structure with skip connections, enabling the capture of both global context and
fine spatial features, key for detecting linear patterns in geophysical data (Figure 1).

Figure 1: Schematic representation of the U-Net architecture used in this study, with an en-
coder–decoder structure and skip connections.

The dataset was split into training (80%), validation (16%), and testing (4%) subsets. The model
was trained for 40 epochs using the Adam optimizer (initial learning rate: 0.001) and a weighted bi-
nary cross-entropy loss to address class imbalance. Training was performed on an NVIDIA GeForce
RTX 4060 GPU, and performance was evaluated using accuracy, precision, recall, and loss evolution
across epochs.

Results

The U-Net architecture detected geological lineaments and fault zones in synthetic aeromagnetic
data. Training was efficient, with rapid convergence and a final validation accuracy of 93.9% and loss
of 0.10 after 40 epochs (Figure 2). Learning curves show consistent accuracy gains and steady loss
reduction, with no signs of overfitting.

On synthetic test datasets (Figure 3), the model accurately reproduced the spatial patterns of
magnetic lineaments. Predicted masks displayed strong spatial continuity and alignment with ground
truth, even under noise and variable anomaly geometries.
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Figure 2: Accuracy and loss curves during training and validation over 40 epochs, showing perfor-
mance improvement and convergence.

Applied to real aeromagnetic data from the Rio Maria Project (SGB/CPRM 1129), the model
maintained robust performance (Figure 4). It detected major structural lineaments, including subtle
features often obscured by noise, demonstrating strong generalization from synthetic to real-world
data.

Overall, the U-Net model captured magnetic lineaments’ geometry, continuity, and orientation.
The high validation accuracy and strong agreement between predictions and reference masks vali-
date the approach and highlight its applicability to structural mapping and mineral exploration.

Conclusions

This study demonstrates the effectiveness of convolutional neural networks, particularly the U-Net
architecture, in automatically detecting and segmenting geological lineaments in aeromagnetic data.
The model achieved high accuracy ( 94%) on synthetic datasets and generalized well to real data
from the Rio Maria region.

The integration of synthetic data, augmentation techniques, and an optimized training strategy
enabled robust identification of lineament patterns, even under noisy conditions. Results confirm
U-Net’s ability to generate accurate segmentation masks, supporting structural interpretation and
potentially accelerating mineral exploration workflows.

Future work should aim to expand the training dataset with more real examples, enhance post-
processing for mask vectorization, and explore alternative architectures to improve performance in
geologically complex areas.
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Figure 3: Prediction result on a synthetic aeromagnetic dataset simulating a lineament anomaly. The
predicted mask is compared to the reference mask.

Figure 4: Prediction result on real aeromagnetic data. The model output is compared to a manually
interpreted reference mask.
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