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Introduction 

Seismic acquisitions with missing traces pose significant challenges to the construction of high-

fidelity seismic images. The seismic interpolation techniques include frequency–space (FX) 
interpolation, prediction-error filtering, kriging, and more recently Machine Learning based 
methods, each aiming to reconstruct missing traces by exploiting spatial, spectral, or statistical 
properties of the seismic data. In this work we follow the Machine Learning approach, but we 
propose a novel strategy based on Graph Convolutional Networks (GCNs). The acquisition 
geometry is introduced in the GCNs framework in the following way: the nodes represent the 
seismic traces and edges are defined by the physical distances among traces. This 
representation enables the inference of missing traces by leveraging spatial relationships 
among neighboring traces. 

Method and/or Theory  

The strong point of the GCN formulation is that the spatial coordinates of receivers are naturally 
introduced in the graph structure of the network. The nodes with available traces are connected 
to nodes with missing traces, and edge weights are computed based on the inverse Euclidean 
distance among them. Binary masks are applied to simulate incomplete acquisition scenarios 
and are employed to simulate the absence of traces. These scenarios are used for training and 
testing the GCN in a self-supervised way. The edge weights guide the flow of information 
across the network, allowing the network to learn and infer missing traces from nearby ones. In 
this way, the GCN model is trained to minimize the reconstruction error of masked traces using 
their topological and spatial context. 

Results and Conclusions 

The results demonstrate that framing the seismic interpolation problem as a graph-based 
learning task is a promising tool. The GCN was able to reconstruct the masked traces while 
preserving spatial continuity and relevant seismic signal characteristics. The main limitation 
arises in regions with low connectivity or sparse neighborhoods, where interpolation is less 
accurate. Current improvements include refining the graph connectivity criteria, exploring new 
metrics in the graph, adding spectral information as new features in the graph, and tuning the 
batch size in the GCN learning process. The interpolated data used in this study are synthetic, 
but applying the method to real seismic datasets is one of the next steps in our research. As a 
perspective, the proposed graph-based approach shows strong potential in seismic 
preprocessing and data recovery under irregular acquisition conditions. 


