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Abstract

We present a hybrid multiscale approach for full waveform inversion (FWI) that strategically inte-
grates UNet Fourier Neural Operators (UFNO) with gradient-based optimization. In the initial fre-
quency band, UFNO approximates the inverse of the Hessian matrix during early iterations, then
shifts to conventional updates for later iterations. For other frequency bands, model updates are
computed based solely on the gradient using the adjoint method. We conducted experiments using
the Marmousi model to compare our hybrid UFNO-based approach with two others: a conventional
multiscale FWI approach (without neural networks) and a neural network-enhanced approach where
model updates for each frequency band incorporate a neural network-computed inverse Hessian
applied to the gradient. Our results show that the hybrid UFNO-based approach achieves inversion
accuracy competitive with the neural network-enhanced method while requiring less computation
time.

Introduction

FWI is a powerful technique for estimating high-resolution subsurface velocity models, with success
hinging on avoiding cycle skipping (Pratt et al., 1998; Tarantola, 1984). To mitigate cycle-skipping,
FWI is usually performed in a multiscale approach, processing data in frequency bands from lowest
to highest. When low-frequency data are available, this strategy effectively prevents cycle-skipping.
Model updates in this approach tipically rely on the loss function’s gradient to determine the update
direction, neglecting the inverse of the Hessian’s contribution. However, numerous studies highlight
the Hessian’s critical role in enhancing FWI's convergence rate.

Our work draws on ideas from Alfarhan et al. (2024) on Hessian approximation in FWI, proposing
a hybrid multiscale framework combining UFNO (Li et al., 2021) with conventional gradient-based
optimization. For low-frequency bands, UFNO approximates the inverse of the Hessian in early
iterations to update the model, followed by gradient-based updates in later iterations. For high-
frequency bands, model updates rely solely on gradients. By exploiting the inverse Hessian matrix
at lower frequencies, the multiscale process generates an improved initial low-wavenumber velocity
model, which is gradually refined with high-wavenumber components in subsequent bands.

Method and Theory

UFNO

The UFNO combines the hierarchical spatial feature extraction capabilities of UNet architectures with
the spectral processing power of Fourier Neural Operators (FNO). This combination enables efficient
learning of mappings between function spaces while capturing both local and global patterns in
seismic data.
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For a given function space mapping, G : A(D) — U(D), where A and U are Banach spaces of
functions defined on domain D, the UFNO learns this mapping through a combination of spatial and
spectral transformations. The core operation in FNO consists of:

R =g (F71 (Ro (F(hY)) + Wikl), (1)

where h! represents the feature map at layer [, F and F~! denote the Fourier transform and its
inverse, Ry ; represents learnable spectral convolution parameters, W, are learnable weights for the
spatial branch, and ¢ is a nonlinear activation function.

Born modelling and inverse Hessian approximation via deep learning
We consider the constant-density acoustic wave equation, given by:
m=2(x)pu(x, t) — Viu(x,t) = f(x,1), 2

where x = (z, z), m(x) is the medium velocity, u(x, t) denotes the pressure wavefield, and f(x,t)
is the source term.

In Born modeling, the model m(x) is split into a background velocity m(x) and a perturbation
dm(x) with m(x) = mo(x) + dm(x). When using the Born approximation, the linear Born modeling
can be expressed as ju = Ldm, where dm(x) = dm(x)/mo(x), and L is the Born modeling
operator. By using a sampling operator P to extract the scattered wavefield at receiver positions and
produce data, we have d = PLdm = Ldm. Born modelling and its adjoint are used to approximate
the inverse Hessian operator. The gradient of FWI can be summarized as g = L7 Ad, where LT
is the adjoint of the Born modeling operator, and Ad is the data residual. Considering the true
perturbation dm, Ad = Lém, the gradient can be rewritten as g = LT Lém, which suggest that ¢
and ém are linked via demigration/migration operations. A blurred gradient can be obtained by:

émy = LT Lg. (3)

Given availability of both g and dm; an approximation of the inverse of the Hessian (l~',TE)*1
can be attained. In this work, we followed Alfarhan et al. (2024) ideias and use UFNO to learn the
mapping from dm; to g, that is, the action of the inverse Hessian operator.

Multiscale approach

To validate the accuracy and feasibility of our proposed hybrid UFNO-based approach, we conducted
a multiscale FWI experiment using the Marmousi model. We selected three frequency bands with
dominant frequencies of 2 Hz, 4 Hz, and 10 Hz, performing 20 iterations per band. Ricker wavelets
with these dominant frequencies served as source signals to generate observed seismic data for
each band. We implemented FWI using Deepwave (Richardson, 2023) for forward and adjoint wave
propagation and the Barzilai-Borwein (BB) method to compute step sizes. In the initial iterations
of the lowest frequency band (2 Hz), we applied Born modeling and its adjoint to the FWI gradient
to obtain the perturbation dm;. The UFNO network was then trained to map §m; to the gradient,
producing the inverse of the Hessian operator which is used to update the model when applied to
the FWI gradient. After several iterations, updates shifted to conventional gradient-based methods
with short BB step sizes. The UFNO architecture featured 20 Fourier modes in both dimensions
and a width of 64, and was trained using the Ly norm loss function (£ = ||gored — Girue|3) With the
AdamW optimizer. For higher frequency bands (4 Hz and 10 Hz), we used only gradient-based
updates with short BB step sizes. We compared our approach to a conventional multiscale FWI and
a neural network-enhanced approach that applies UFNO-based/UNet-based Hessian correction in
every iteration across all frequency bands, retraining the UFNO/UNet network for each new band.
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Results

Figure 1 shows the true Marmousi velocity model and its smoothed version, which was used as
starting model for experiments. Table 1 presents a comprehensive comparison of different inversion
strategies in terms of computational time and final loss value.

Table 1: Performance comparison of FWI approaches.
The test setup used one NVIDIA Tesla V100 GPU.
Method Time (min)  Final Loss
Conventional multi-scale FWI 9:48 1.59 x 1071° ;
UFNO hybrid (first band + conv.) 8:21 8.54 x 10~ 14
UNet hybrid (first band + conv.) 14:04 1.20 x 10714
First band with UFNO 10:10 9.39 x 10~14
First band with UNet 19:08 4.16 x 10~14
UENG multi-scale 1945 939 < 10-14 Figure 1: Marmousi velocity model and its
UNet multi-scale 45:00 1,39 % 10-13 corresponding smoothed version used in

all FWI experiments.

As shown in Table 1, the conventional multi-scale FWI achieves the best final loss value, demon-
strating its effectiveness in finding optimal solutions. Our proposed hybrid UFNO approach, using
UFNO for the first 12 iterations of the initial frequency band (e.g., 2 Hz), then gradient-based updates
for the remaining 8 iterations and higher frequency bands, yields a similar loss value with reduced
computational time. In contrast, using UNet instead of UFNO in the hybrid approach increases com-
putation time while maintaining a comparable loss value. Additionally, Table 1 presents results for
two other approaches: one applying UNet/UFNO-based Hessian-corrected updates for all iterations
across all bands, and another using UNet/UFNO-based Hessian-corrected updates only in the first
band, followed by gradient-based updates in subsequent frequency bands.

Our experiments revealed that applying UNet/UFNO-based Hessian-corrected updates at each
iteration for all bands yielded suboptimal results, with low loss values but no model improvement,
notably in the 4 Hz and 10 Hz bands. Moreover, computational times were significantly longer, es-
pecially for UNet (see last row in Table 1). This observation motivated our hybrid strategy, which
limits neural network use on the initial frequency band for maximum benefit. Figure 2, shows the
results of conventional multiscale FWI (top row), and our hybrid approach using UNet (middle row)
and UFNO (bottom row) in the first band. Although the hybrid approach yields a slightly higher fi-
nal loss value than conventional FWI, visual inspection of the inverted models (Figure 2) indicates
comparable quality, though UNet introduces some stripe-like noise.

Conclusions

We propose a hybrid multi-scale FWI method that use UFNO to approximate the inverse of the Hes-
sian, enhancing inversion robustness. The hybrid approach combines Hessian-corrected updates
(applying UFNO to FWI gradients) with gradient-only updates in all or just the first low-frequency
band. Applied only in the initial band, it improves low-wavenumber components, while conven-
tional FWI refines high-wavenumber components in higher frequency bands. Experiments show
this achieves equivalent model quality in less time than neural network-enhanced methods using
UNet/UFNO-based Hessian-corrected updates for all bands. Furthermore, additional research will
be required to gain a deeper comprehension of these networks for seismic inverse issues.
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Figure 2: Comparison of velocity models obtained through different FWI approaches across fre-
quency bands (2 Hz, 4Hz, 10 Hz).
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