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Introduction

Granular materials continue to challenge unified theoretical descriptions across arbitrary geometries
and loading conditions, frequently exhibiting behaviors that elude classical continuum mechanics.
Typical examples include the ellipsoidal-shaped flow core observed during silo discharge and the
finite-thickness shear layers that form on inclined planes and in annular Couette cells. These zones
have characteristic thicknesses of only a few grain diameters, prompting the widespread use of ad-
vection–diffusion–type models to reproduce the measured velocity profiles.

Beginning with Litwiniszyn’s random-walk picture for silo drainage in the late 1950s, researchers have
turned to stochastic descriptions in which the ensemble behavior of particles, voids, or “bubbles” of
free volume evolves by coupled advection–diffusion processes. The void-diffusion and kinematic
models of Mullins (1972) and Nedderman Tüzün (1979) reproduce many velocity profiles but over-
predict particle mixing and require an empirically expanding diffusion length. Later refinements, no-
tably Bazant’s bubble-propagation framework and the Stochastic Flow Rule (SRF) of Kamrin Bazant
(2007), added nonlocal drift tied to granular failure criteria, capturing flow-zone thicknesses across
silos, inclined planes, and Couette geometries. Yet these treatments remain phenomenological: the
advection–diffusion form is assumed rather than derived from first principles, and predictive power
hinges on fitted parameters with no direct mechanical interpretation.

Here we derive such governing equations directly from mechanical principles and show that the ex-
tent of the flowing zone is controlled by a previously unrecognized dimensionless group: the ratio
of driving to resisting forces acting on clusters of mobilized particles. Closed-form analytical so-
lutions and high-resolution numerical simulations are presented, and the model’s predictions are
benchmarked against published data sets for silo discharge (Fullard et al., 2019), inclined-plane flow
(Wang et al., 2019), and annular Couette shear (Mueth et al., 2000; Bocquet et al., 2002; Cruz,
2004). In every case the theory captures both the shape and thickness of the flowing region without
parameter tuning, demonstrating that the proposed dimensionless number governs regime transi-
tions in quasi-static granular flow. The framework therefore provides a unified, mechanics-based tool
for anticipating flow localization in randomly packed granular media under diverse boundary condi-
tions.

Proposed theoretical model

Quasi-static granular flow involves correlated clusters of grains whose internal interactions occur at
the particle scale while their collective motion spans many diameters. To bridge these scales we
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invoke the volume–averaging theorem: any balance law written for the microscopic fields can be in-
tegrated over a control volume that moves with the flowing cluster and then decomposed into a bulk
(volume) term plus a boundary (surface) term. Applied to the grain-scale momentum equation, this
procedure yields a macroscopic balance in which the divergence of the averaged stress tensor is not
the only source of momentum change. A second contribution, expressible as a surface integral of the
fluctuating tractions that act on the boundary of the control volume, appears naturally. We interpret
this additional term as an effective friction force: it captures the net resistance generated when the
fluidized cluster shears against its more static surroundings, and it vanishes when relative motion
ceases.

The remainder of this chapter formalizes the averaging operation, derives the explicit form of the sur-
face contribution, and shows how the resulting friction term converts the averaged momentum equa-
tion into an advection–diffusion–type law whose transport coefficients are fixed by micro-mechanical
parameters.

1. Volume averaging: For any microscopic field B(x′, t) defined on the solid phase of a control
volume V that encloses a correlated cluster of moving grains, we use the intrinsic average

⟨B⟩s(x, t) =
1

Vs

∫
Vs

B(x′, t) dVs (1)

with the relation to the superficial average

⟨B⟩ = ϕs ⟨B⟩s, ϕs =
Vs

V
. (2)

2. From the microscopic to the macroscopic momentum balance: Starting from the grain-scale
balance

ρ
(
∂t + uj∂j

)
ui = ∂jσij − ρgi, (3)

volume-averaging gives

ρ
(
∂t + ⟨uj⟩s∂j

)
⟨ui⟩s = ∂j⟨σij⟩s − ρgi − fi, (4)

where the effective surface force
fi = ∂j⟨σij⟩s − ⟨∂jσij⟩s (5)

captures boundary shear lost during coarse-graining.

3. Physical interpretation of fi: Write the stress field as

σij = ⟨σij⟩s +∆σij + δσij . (6)

The fluctuating parts ∆σij (hydrostatic) and δσij (deviatoric) average to zero but generate fi through
their gradients, acting as a Coulomb-type friction that vanishes when relative motion ceases.

4. Constitutive closure (quasi-static clusters): Assuming a Bingham-like rheology with friction
coefficient µ and kinematic viscosity ν,

⟨δσij⟩s =
µ⟨P ⟩s
⟨γ̇⟩s

⟨γ̇ij⟩s + νρ ⟨γ̇ij⟩s, δσ ≥ µ⟨P ⟩s. (7)
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Eliminating ⟨γ̇⟩s yields a drag law

fi = −K

χ
vi, (8)

with

χ =
(
1− Y0Y

)2

, Y =
D ∥f∥
µP

. (9)

5. Macroscopic equation of motion for quasi-static flow: Combining (4) and (8), and separating
rigid translation Ui from the internal velocity vi,

ρ
(
∂t + ⟨uj⟩s∂j

)
⟨ui⟩s = ∂j⟨σij⟩s − ρgi −

K

χ
vi (10)

forms the effective granular motion equation. In the quasi-static limit, inertia is negligible; the balance
reduces to gravity, mean stress gradients, and the frictional drag (8), giving a mechanics-based
advection–diffusion structure governed by the single dimensionless parameter Y .

Results and conclusions

For flow down an inclined plane the condition Y ≥ Y0 becomes

Y =
D50 |∂yτxy − ρg sin θ|

µP
=

D50 | tan θ − µ|
µy

≥ Y0. (11)

Defining the characteristic thickness

δy ≡ D50 | tan θ − µ|
Y0 µ

, (12)

we find that motion is confined to y ≤ δy; the model therefore predicts a flowing-layer thickness equal
to δy. For steady conditions the velocity profile follows

u =
D2

50

32ρ Y 2
0 ν

χ
(
∂yτxy + ρg sin θ

)
=

µgD50

32Y0ν
cos θ δy

(
1− y

δy

)2

. (13)

For Taylor–Couette shear the criterion Y ≥ Y0 reads

Y =
D50

µP

∣∣∣∣∂r(r2τrθ)r2

∣∣∣∣ =
2D50

µr

∣∣∣∣µw − µw − µ

1− (rw/δr)2

∣∣∣∣ ≥ Y0, (14)

so that with

∆r ≡ δr − rw ≈ D50(µw − µ)

Y0 µ′

(
1 +

2D50µ

rwY0µ′

)−1

, (15)

flow occurs only for r ≥ rw +∆r; ∆r is the flowing-layer thickness. The resulting tangential velocity
profile is

uθ =
D2

50

32ρ Y 2
0 ν

∂r(r
2τrθ)

r2
χ =

µPD50

32ρ Y0ν

δr
r

(
1− r

δr

)2

. (16)

Model predictions are compared with the inclined-plane data of Wang et al. (2019), obtained via
Particle Tracking Velocimetry (PTV). The experimental setup consisted of a long, narrow channel
(Fig. 1a) with an upper hopper that supplies particles and a lower section inclined 20◦ below the
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material repose angle. Figure 1b shows excellent agreement between the measured velocity profiles
(symbols) and the present model (solid line).

Figure 1: Inclined-plane flow. (a) Experimental apparatus of Wang et al. (2019). (b) Horizontal
velocity profiles: PTV data (symbols) versus present model (solid line).

Taylor–Couette predictions are assessed against the data compilation of MiDi (2004), which com-
bines the measurements of Mueth et al. (2000), Bocquet et al. (2002), and da Cruz (2004). Figure 2b
compares the normalized tangential velocity profiles, again showing close correspondence between
theory and experiment.

Figure 2: Taylor–Couette flow. (a) Experimental configuration from the MiDi (2004) data set. (b)
Normalized tangential velocities: experimental points versus present model (solid line).

For silo discharge the model is implemented in COMSOL MULTIPHYSICS and compared with the
Particle Image Velocimetry (PIV) measurements of Fullard et al. (2019). The rectangular silo (W =
200 mm, H = 350 mm, D = 15 mm) contained one or two basal openings of diameter D0 =
14 mm, spaced at various separations L. Figure 3b-c shows stationary velocity fields and profiles for
the single-orifice case, demonstrating that the proposed model outperforms traditional diffusion-type
approaches.
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Figure 3: Silo discharge. (a) Experimental geometry (Fullard et al., 2019). (b) Vertical and (c)
horizontal velocity profiles at heights 4.7, 17.6, and 30.5 cm: PIV data (symbols) versus present
model (solid line).

Overall, the proposed framework reproduces the key features of the flowing zones in all three
geometries—inclined plane, Taylor–Couette, and silo discharge—capturing velocity profiles with no
additional parameter tuning and thereby underscoring its versatility across distinct stress conditions.
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