

SBGf Conference

18-20 NOV | Rio'25

Sustainable Geophysics at the Service of Society

In a world of energy diversification and social justice

Submission code: 5YNAQJGR6Q

See this and other abstracts on our website: <https://home.sbgf.org.br/Pages/resumos.php>

Unveiling the Geophysical Signature of the Santa Lúcia Cu-Au Polymetallic Deposit: Implications for Mineral Exploration in the Carajás Mineral Province

Adriano Valente (Universidade de Brasília), Adalene Silva (Universidade de Brasília), Luiz Cláudio Gonçalves Costa Luiz (OZ Minerals), Marcelo Henrique Leão Santos (UnB), Mateus de Araújo Silva Mateus (OZ Minerals), Meyre Jessica James Meyre (OZ Minerals), Eduardo Farias Rebelo Eduardo (OZ Minerals)

Unveiling the Geophysical Signature of the Santa Lúcia Cu-Au Polymetallic Deposit: Implications for Mineral Exploration in the Carajás Mineral Province

Please, do not insert author names in your submission PDF file

Copyright 2025, SBGf - Sociedade Brasileira de Geofísica/Society of Exploration Geophysicist.

This paper was prepared for presentation during the 19th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November 2025. Contents of this paper were reviewed by the Technical Committee of the 19th International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of the Brazilian Geophysical Society is prohibited.

Abstract

Copper, a key element in the global energy transition, has intensified the search for new subsurface deposits, which are often blind and geophysically subtle. The Neoproterozoic-aged Santa Lúcia Cu-Au deposit, located in the southeastern Carajás Domain near Serra do Rabo Ridge, is hosted in rhyolitic subvolcanic rocks of the Grão Pará Group and partially truncated by a pegmatitic intrusion. Studies suggest that Santa Lúcia represents a Cu-polymetallic system distinct from the classical IOCG model.

The application of multisource geophysical methods revealed significant exploration challenges. Magnetic data, both regional and ground-based, showed low contrast due to the weak magnetic susceptibility of the mineralized zone. Three-dimensional inversion confirmed the absence of a strong magnetic response. In contrast, electrical (IP) and electromagnetic (TDEM) methods revealed strong chargeability and conductivity contrasts, enabling the delineation of different mineralized domains. While chargeability effectively detected disseminated sulfides, it was limited in identifying massive sulfide bodies. Resistivity models proved more effective in mapping conductive anomalies associated with mineralization.

Data integration indicates that the Santa Lúcia deposit, dated at 2.7 Ga, can be characterized at the deposit scale as conductive, chargeable, and weakly magnetic, showing similarities to shallower Cu-Au polymetallic deposits dated to around 1.8 Ga.

These results underscore the importance of multisource geophysical and petrophysical integration, particularly using methods sensitive to electrical conductivity, for identifying mineral systems with weak magnetic expression. The Santa Lúcia case highlights the need for combined geophysical strategies to effectively characterize complex mineral systems and uncover hidden exploration potential.