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Abstract

We propose a CNN-based acoustic inversion using a 2D U-Net trained with perceptual loss on
realistic synthetic data for characterizing pre-salt reservoirs. Our approach outperforms the
conventional Bayesian linearized AVO inversion, recovering both low- and high-frequency content
more accurately. Results show improved resolution and reduced dependence on the low-
frequency model, demonstrating the potential of deep learning to enhance seismic interpretation
in complex geological settings.

Introduction

Seismic inversion in migrated seismic data has been routinely used for pre-salt reservoir
characterization in recent years (e.g., Teixeira et al., 2023). Most of the recently acquired seismic
data from the Brazilian pre-salt have a broadband spectrum, obtained using ocean-bottom nodes
(OBN), ocean-bottom cables (OBC), variable-depth streamers (VDS), and other acquisition
technologies. The broadband characteristic, typically evidenced as a strong low-frequency
content, favors the structural and stratigraphic interpretation of these deep carbonate reservoirs.
However, performing seismic inversion on broadband data presents several challenges,
especially in pre-salt areas, such as the need for long-duration windows from well logs and
seismic data to capture low-frequency components accurately. The absence of this frequency
content in the wavelet leads to an increase in inversion residuals and high instability.

Deep-learning (DL) methods revolutionized geosciences in data analysis, interpretation, and
prediction. Convolutional neural networks (CNNs) are an example that manage complex
geospatial data better than conventional methods and traditional machine-learning techniques.
CNNs facilitate data-driven acoustic seismic inversion, eliminating assumptions in conventional
approaches in forward modeling, thus efficiently solving non-linear problems. Inversion can also
occur in the depth domain. However, geosciences suffer from a shortage of labeled data. Thus,
an alternative approach for training the networks is to use synthetically generated datasets.

This work proposes a CNN to perform acoustic seismic inversion in the OBN post-stack data of
the Buzios Field pre-salt, Santos Basin, Brazil. For that, we train a 2D CNN with the perceptual
loss function in synthetic seismic data with a broadband aspect. The trained network is then
applied to calculate the depth-domain acoustic impedance in the real-world field data. We analyze
qualitatively and quantitatively the performance of the proposed approach, further comparing it
with the maximum a posteriori of the Bayesian linearized AVO inversion.

Methodology

The inversion is performed in the OBN data of the Buzios Field, and the seismic image includes
the application of the velocity model derived with full-waveform inversion (FWI) for the least-
squares reverse-time migration (LSRTM). Our network is fully trained with synthetic data. In the
following subsections, we describe the generation of this dataset for training and the network
architecture.

Synthetic seismic data generation

This subsection presents the strategy adopted for generating the synthetic seismic dataset. We
generated a 3D relative geological time (RGT) volume to define a structural framework featuring
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a specific arrangement of faults and high-frequency folds. The RGT grid efficiently captures
complex geometry, and we inserted faults and folds by following the procedure described by Wu
etal. (2019). This structurally deformed RGT model was used to warp a flat-layered, geostatistics-
based simulated acoustic impedance volume generated using the fast Fourier transform with
moving average (FFT-MA) method.

To mimic the blurred appearance of real seismic data from pre-salt, we computed a point-spread
function (PSF) using Kirchhoff operators for de-migration and migration in a homogeneous
background velocity medium with random sampling following a typical distribution of pre-salt
velocities. We then convolved this PSF with the reflectivity volume using a Butterworth wavelet
tuned to the pre-salt broadband spectrum. As a result, we obtained four 3D volumes: RGT, faults,
acoustic impedance, and PSF-convolved amplitude. An illustration of the training samples can be
found at Fernandes et al. (2024).

Because our network processes 2D inputs, we randomly sampled 20 slices from each 3D
synthetic seismic volume. In total, the training set comprised 10,000 seismic sections, while the
test set contained 2,000 sections.

Network architecture

We dealt with the acoustic inversion as a pixel-wise regression task. To address this issue, we
developed a 2D U-Net with a perceptual loss function, which consists of an auto-encoder. We
opted for this strategy because perceptual loss is highly efficient for reconstructing high-frequency
information in the inversion problem, thereby increasing the vertical resolution of the output
(Zhang et al., 2022). This architecture takes as input a seismic section with dimensions 256 x 256
and outputs an acoustic impedance model with the exact dimensions. The prediction is combined
with the low-frequency model and fed into the perceptual loss network, along with the acoustic
impedance label, to extract features across the layers and capture high-resolution information
from the data. The low-frequency model is the acoustic impedance label filtered up to 1 cycle/km;
we have defined this cutoff based on the spectrum of the application data. A general network
design scheme is illustrated in Figure 1.
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Figure 1: Scheme of the CNN for the proposed acoustic inversion.

The loss function of the deep neural network is:

3
L=LUNet+HXzLPir (1)

=1

where Ly is the loss of the inversion network, i is the balancing factor, and Lp; are the losses
of the first three layers of the perceptual loss auto-encoder. To overcome memory issues, we
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employed a model-parallelization scheme in the network to split the deep-learning model across
two GPUs (NVIDIA RTX A4500 with 20 gigabytes of RAM each). We trained the network for 200
epochs with a batch size of 32, a learning rate of 104, and the Adam optimizer. The u parameter
was set to 1. U-Net parameters were ELU activations, and the number of features doubled from
the first layer (64) to the bottleneck (1028). The kernel sizes of the five levels of the U-Net were
11, 11,7, 5, and 3, respectively.

We have begun building the low-frequency model in the time domain, with 31 wells tied, and the
FWIl interval velocity used as an external drift for kriging the well-log data. After that, we performed
the conversion to the depth domain to finally filter the model up to 1 cycle/km using a 4th-order
Butterworth low-pass filter. The low-frequency model is summed with the network output
multiplied by a scaling factor.

Results

Figure 2 shows the acoustic seismic inversion using the CNN in the seismic section crossing the
blind test Well 1 (W1). The inverted acoustic impedance section yields a noticeably high-
resolution estimate, capable of resolving thin layers that are typically challenging to delineate
using conventional methods. Additionally, the inverted impedance aligns well with the well-log
data, demonstrating a strong correlation between the network predictions and the ground truth.
We also highlight how the network can recover the low-frequency content without artificially
amplifying its amplitudes. All these factors are crucial for producing geologically realistic models
that accurately represent both the large-scale structure and fine-scale variability of the
subsurface, thereby improving the characterization of deep, complex reservoirs. Furthermore, our
results demonstrate the importance of training deep neural networks for acoustic inversion with a
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Figure 2: Acoustic inversion in the Buzios Field using a 2D CNN in the section crossing Well 1
(W1). Wells W2, W3, W4, and W5 are projected 12, 23, 3, and 7 crosslines, respectively.

Discussion

We perform a comparison of the CNN-based and the maximum a posteriori (MAP) of the Bayesian
linearized AVO inversions (Figure 3). The MAP solution is equivalent to a Tikhonov-regularized
least-squares inversion. This is the same seismic section as shown in Figure 2, but here the input
data are band-limited and filtered to retain only components up to 2 cycles/km. For a medium with
average velocities within the range of 2600-3100 m/s, this spatial frequency is equivalent to
approximately 5-6 Hz.
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Figure 3: Comparison of both inversion approaches up to 2 cycles/km.

While the CNN-based inversion modifies the low-frequency model, reducing the bias toward the
prior model, the MAP is unable to cover information in this bandwidth in the seismic, albeit low-
frequency, records in the OBN data. This observation suggests that the network can extract
meaningful stratigraphic and acoustic impedance variations even in the presence of limited
frequency bandwidth.

Conclusions

We successfully employed a CNN for acoustic inversion in the Buzios Field, achieving a high-
resolution estimate of acoustic impedance. The result shows how crucial training networks are for
acoustic inversion using a dataset that closely resembles real-world application data. The fact
that the CNN result diverges more from the low-frequency prior indicates that the network is not
merely replicating the low-frequency trend but instead learning to exploit subtle amplitude
variations in the low-frequency range to reconstruct high-resolution impedance models.
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