

SBGf Conference

18-20 NOV | Rio'25

Sustainable Geophysics at the Service of Society

In a world of energy diversification and social justice

Submission code: 60ZAW6BPGW

See this and other abstracts on our website: <https://home.sbgf.org.br/Pages/resumos.php>

Effect of overpressure and diagenesis on seismic attributes and AVO analysis of stiff reservoirs

Antonio Pessoa, Mark Chapman (The University of Edinburgh), Giorgos Papageorgiou (The University of Edinburgh)

Effect of overpressure and diagenesis on seismic attributes and AVO analysis of stiff reservoirs

Copyright 2025, SBGf - Sociedade Brasileira de Geofísica/Society of Exploration Geophysicist. This paper was prepared for presentation during the 19th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November 2025. Contents of this paper were reviewed by the Technical Committee of the 19th International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of the Brazilian Geophysical Society is prohibited.

Introduction

Pore pressure build-up in sedimentary formations shifts part of the overburden stress from the rock skeleton to the pore fluids. This load transfer alters elastic wave velocities and tends to preserve porosity under burial. Although overpressure mechanisms are widely studied for drilling hazard mitigation, their impact on amplitude variation with offset (AVO) responses remains underexplored. In this work, we implement a pressure-sensitive rock physics framework to quantify the elastic behaviour of shales and sandstones under varying stress regimes. Using data from core plugs, well logs, and 3D seismic volumes, we analyse how compositional and diagenetic differences influence the pressure dependence of seismic attributes in the offshore French Guiana and Amapá basins. Our modelling demonstrates that elevated pore pressures lead to reductions in both intercept and gradient reflectivity amplitudes, occasionally shifting AVO responses from class I to class II. However, through interpretation of the field seismic dataset, we attribute some observed amplitude dimming not to pressure alone but to inhibited quartz cementation—linked to differential diagenesis—which preserves porosity and moderates the increase in bulk density.

Method

To account for the contrasting mechanical behaviour of shales and sands under pore pressure influence, we adopt a hybrid rock physics modelling approach. The dry rock moduli are made pressure-dependent through the following formulations:

$$K_{dry} = K_{\infty} / (1 + E_k \times e^{-P/PK}) ; \quad (1)$$

$$\mu_{dry} = \mu_{\infty} / (1 + E\mu \times e^{-P/P\mu}) . \quad (2)$$

Where P is the confining pressure, K and μ refer to the bulk and shear moduli, respectively. The are calibrated using laboratory and log data methodology incorporates concepts from Gassmann fluid substitution, MacBeth's (2004) semi-empirical pressure sensitivity model, and the DEM theory proposed by Berryman (2002). We simulate fluid effects (brine, oil, and gas) through Gassmann's relations. Overpressure leads to decreased velocities and acoustic impedance, and higher Poisson's ratio in both lithologies. These velocity and density variations were used to compute reflectivity curves at different incidence angles. Synthetic seismograms were generated using a 25 Hz Ricker wavelet to replicate field seismic conditions.

Results and Conclusions

Our findings underscore the complex interaction between geological history, mineral composition, diagenetic pathways, and pressure evolution in shaping seismic responses. Elevated pore pressures can enhance the visibility of fluid effects by increasing contrasts in elastic properties—particularly acoustic impedance and Poisson's ratio—between sands and shales. Properly constraining dry frame moduli and incorporating geological controls improves interpretation of amplitude anomalies, helping to distinguish pressure effects from genuine hydrocarbon indicators. These insights are particularly relevant for frontier exploration settings where well control is limited. Nevertheless, interpreters are advised to combine rock physics modelling with regional geological context to minimise the risk of false positives in amplitude-based prospecting.