

SBGf Conference

18-20 NOV | Rio'25

Sustainable Geophysics at the Service of Society

In a world of energy diversification and social justice

Submission code: 6LMB5QZKW4

See this and other abstracts on our website: <https://home.sbgf.org.br/Pages/resumos.php>

Impacts of quantitative seismic interpretation on the geological modeling of porosity and permeability in silica-rich carbonate reservoirs

Desiree Faria (PETROBRAS), Bruno Lima, Julia Campos Guerrerp, Leonardo Silva (Petrobras), Maria Campos (Petrobras), Victor Mund (Petrobras)

Impacts of quantitative seismic interpretation on the geological modeling of porosity and permeability in silica-rich carbonate reservoirs

Copyright 2025, SBGf - Sociedade Brasileira de Geofísica/Society of Exploration Geophysicist.

This paper was prepared for presentation during the 19th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November 2025. Contents of this paper were reviewed by the Technical Committee of the 19th International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of the Brazilian Geophysical Society is prohibited.

Introduction

Lacustrine carbonates, especially the ones which comprise the pre-salt reservoirs, experience extreme diagenetic processes. These events significantly alter porosity and permeability, therefore acting optimization of the production. The acquisition of Ocean Bottom Nodes (OBN) and least-squares reserve-time migration (LSRTM) led to a paradigm shift in the Buzios field, mainly related to the confidence in the amplitude in the pre-salt deposits which caused stability in the compressional-to-shear velocity ratio estimated by the seismic inversion. Rock physics demonstrates that the increase in silicification intensity decreases the Vp/Vs, stating that this elastic property is a proxy for the identification of the silica-rich facies. The reason for this behavior has a geological explanation: the contact of calcite-dominated host rocks percolated by highly silica-rich hypogenic fluid engenders a diagenetic process whereby occurs the replacement of the calcite mineral by silica mineral. As silica presents relatively low Vp/Vs in comparison to the carbonate reservoirs, this activity reduces the Vp/Vs with respect to the background media. Therefore, we make use of the seismic-derived Vp/Vs volume for the recognition of silicification in subsurface. The procedure follows the geophysical and geological concepts which stipulate that low Vp/Vs geobodies close to hydrothermal fluid conduits, particularly faults and fractured intervals, are strong prospects for presence of silica in this lacustrine carbonate. These geobodies provide, in the geological model, the distribution and geometry of the karstified bodies and, consequently, the porosity and permeability thereof.

Method

The methodology can be simplified by the following steps: i) perform the rock physics diagnosis to understand the elastic property behavior of silicification in carbonate rocks; ii) the sparse-spike seismic inversion of angle-stacked volumes allows for the three dimensional estimation of elastic property volumes; iii) track low Vp/Vs geobodies close to conduits of silica-rich hypogenic fluid, where are the most plausible locations of silicified host rocks; iv) select these geobodies tying them to well information and conceptual knowledge; v) combine them with high-resolution stratigraphy to delineate the geometry of karst; v) guide porosity and permeability distribution in the karstified rocks .

Results and Conclusions

In this work, we delve into a novel methodology and fundamental concepts behind the seismic identification of silicified rocks and its impact on geological modeling of porosity and permeability in pre-salt carbonates. The results of acquisition and processing data of OBN deliver confident amplitudes which enable us to extract more information from the quantitative seismic interpretation and expand its application to geological modeling. Stable Vp/Vs volumes proved to be the proxy for the interpretation of silicification in pre-salt reservoirs. Geobodies of low Vp/Vs provide the geometry of silicified bodies, therefore, tracking the karstification in carbonate rocks. The procedure directly impacts the estimation of porosity and permeability in the modeling stage. The insights of this research contribute to refining reservoir management strategies and enhancing production optimization initiatives in similar geological settings.