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Abstract Summary

We developed a seismic data interpolation workflow, which includes data preprocessing, network
training, and measuring the quality of the interpolated data. The goal is to train the network in such
a way that it can interpolate Monitor datasets, which could be acquired with a sparse geometry. We
used a realistic synthetic 2D Ocean-Bottom Nodes (OBN) dataset which simulates non-repeatability
effects. We found out that the network was capable of interpolating 50% and 75% of the sources,
maintaining the timelapse information.

Introduction

Seismic data interpolation using machine learning techniques is a widely researched topic. Method-
ologies using many architectures and frameworks have been proposed, such as U-Net (Chai et al.,
2021), GAN (Collazos et al., 2024), and diffusion models (Wang et al., 2024), for example.

Most works focus on the comparison between the interpolated and the original seismic data,
aiming to minimize their difference by optimizing metrics like RMS and SSIM, and do not deal with
timelapse applications, where the interpolation errors become noises that may be larger than the
timelapse signals of interest.

We developed an interpolation workflow of timelapse data which includes data preprocessing,
network training, and measuring the quality of the interpolated data.

Methodology

We interpolate the seismic data with a U-Net with input and output sizes of 256 x 256. We normalize
the seismic data to the interval [—1, 1] and split the seismograms into windows using the strategy
presented by Zhu et al. (2023). The training process is done by decimating and interpolating the
decimated traces, using a dense Baseline dataset. The goal is to train the network in such a way
that it can interpolate source traces from Monitor datasets, which could be acquired with larger shot
spacing, accelerating the acquisition. We also use the hyperparameter search strategy proposed by
Pinheiro et al. (2024) to tune the U-Net hyperparameters.

We use a realistic synthetic 2D OBN dataset which simulates a Baseline and a Monitor acquisition
with four non-repeatability effects presented by Duarte et al. (2025). This dataset is based on a
Brazilian pre-salt model that was obtained by simulating 26 receiver gathers, spaced by about 375
m, located on the water bottom, and 353 sources spaced by about 50 m, using a Ricker wavelet with
a peak frequency of 14 Hz. In Figure 1, we present the Baseline and Monitor P-wave velocity models,
as well as the difference between them. Note that the velocities range between around 1,500 and
5,500 m/s, while the maximum difference between the velocity models is around 90 m/s.
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and Monitor models.

In order to measure the quality of interpolation, we perform the migration of the seismic data with
the Reverse Time Migration with Inverse Scattering Image Condition (Kiyashchenko et al., 2007).
We then visually compare the migrated images and compute the following metrics:

NRMS = 200 x RMS(Monitor — Baseline)/(RMS(Baseline) + RMS(Monitor)), (1)

NdRMS = 2x(RMS(Monitor)— RM S(Baseline))/(RMS(Baseline)+ RM S(Monitor)), (2)
NRMS_Diff =2x RMS(Monitor — Baseline)/(RMS(Baseline) + RMS(Monitor)). (3)

NRMS is calculated over a section of the migrated images, while NDRMS and NRMS_Diff are calcu-
lated for each trace under a given region.

Experiments

We trained the U-Net using the Baseline dataset by consistently decimating and interpolating source
traces. After that, we used the trained network to infer the decimated traces of the Monitor dataset.
We selected three different regular decimation ratios: 50%, 75%, and 87.5%.

In Figure 2, we present the original seismograms, decimated seismograms, interpolated seismo-
grams, and the difference between the original and the interpolated seismograms. We call attention
to the fact that the original and interpolated seismograms are very similar, but, as the decimation
ratio increases, the metrics MAE and RMS increase and the metric SSIM decreases. It is difficult to
assert whether the interpolation has good quality or not, based only on the values of these metrics.
It is even harder to estimate the quality of the interpolation visually, as it is necessary to apply a color
mapping gain so that we can observe the interpolation errors more clearly.

In order to estimate the quality of interpolation, we performed migrations with the Baseline dataset
and the Monitor dataset. In Figure 3, we present the comparisons between migrated images using
the Monitor and Baseline datasets. We present results using the complete Monitor dataset, and the
Monitor with 50%, 75%, and 87.5% interpolated traces. Looking at the difference between migrations
with the complete Monitor dataset, we note that only the small region around (z, z) = (8.7,4.9) is
due to the timelapse change in the reservoir, and everything else is due to the noise generated by
the non-repeatability effects. We observe that the results with the decimation ratios of 50% and
75% are visually similar to the ones with the complete Monitor, and they also have similar values
of NdRMS and NRMS_Diff around the reservoir, which indicates a satisfying interpolation for these
cases. However, we observe that the timelapse signal around (z, z) = (8.7,4.9), due to the change
in the reservoir, is significantly lost when we interpolate 87.5% of the traces. The NdRMS and
NRMS_Diff values around = = 8.7 are also greatly reduced with this level of interpolation.
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Figure 2: Seismic data interpolation. The four columns of figures refer to the original, decimated,
and interpolated seismograms, and the difference between the original and the interpolated seismo-
grams, respectively. The three rows refer to the decimation ratios of 50%, 75%, and 87.5%, indicating
100 m, 200 m, and 400 m between traces, respectively. The values of the metrics MAE, RMS and
SSIM are calculated between the original and interpolated seismograms. A color mapping gain of
25x was applied for better visualization.

Conclusions

We developed an interpolation workflow for data preprocessing, network training, and measuring the
quality of the interpolated data. The network was trained with a Baseline dataset, and it was used
to infer traces from a Monitor dataset. We measured the quality of the interpolation by performing
migrations with the interpolated data. We found out that the network was capable of interpolating
50% and 75% of the traces, maintaining the timelapse information.
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Figure 3: Comparisons between the migrated images using the Monitor and Baseline datasets. The
NRMS values were calculated using the window delimited by the dashed lines. The NdRMS and
NRMS_Diff values were calculated for each trace within the horizons BoS — 45m and BoS + 130m.
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