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Abstract Summary

Seismic ray tracing is a key technique in imaging and reservoir studies, typically solved by numerical
methods that may become unstable in complex velocity models. Physics-Informed Neural Networks
(PINNSs) offer improved physical consistency but suffer from limited generalization and convergence.
We propose a Physics-Informed Kolmogorov—Arnold Network (PIKAN) that uses trainable activation
functions and parametric inputs to model continuous families of raypaths. The model is trained with a
composite loss combining data-driven Mean Squared Error, physics loss via automatic differentiation,
and a data-aware weighting scheme to improve learning in regions under-sampled by raypaths. The
velocity model is constructed using B-spline interpolation from sparsely sampled parametric data,
with adaptability to complex models. Experiments demonstrate high predictive accuracy (R? > 0.99)
and strong agreement with Runge-Kutta solutions. PIKAN also generalizes to unseen conditions,
confirming its robustness for seismic modeling in realistic scenarios.

Introduction

Seismic ray tracing is a significant technique of wavefield modeling of wave propagation in multi-
media for seismic imaging and reservoir characterization. It refers to solving a system of nonlinear
differential equations by approximating Snell’s law for ray estimation of the trajectories and the travel
times in heterogeneous and anisotropic velocity models. Although traditional numerical solvers, such
as modified Newton-based methods, provide accurate solutions, they lose stability or consume much
computational effort when a high velocity contrast or spatial variability exists (Koketsu and Sekine,
1998; Wang, 2014).

In recent years, efforts have been made to develop other methods based on Physics-Informed
Neural Networks (PINNs) for ray tracing problems. These frameworks incorporate the governing
physical equations in the loss function directly, such that the network can learn solutions without
access to labeled data (Duarte et al., 2023). However, PINNs continue to suffer from key limitations:
they are challenging to converge and generalize, which often discourages the use of initial conditions
— like source position or shooting angle — as input variables. Therefore, the network learns a single
raypath with fixed initial conditions, restricting its generalization and scalability.

To mitigate these challenges, we employ Physics-Informed Kolmogorov—Arnold Networks (PIKANSs)
for seismic ray tracing. Unlike common networks, KANs utilize trainable activation functions, improv-
ing interpolation and interpretability (Liu et al., 2025). This allows the model to generalize over a
number of initial conditions and learn continuous families of raypaths. Besides, we introduce a data-
aware regularization approach that adaptively reweights the physics loss by the local data density
(Xiang et al., 2022), promoting the physical consistency in regions under-sampled by raypaths and
data-guided refinement elsewhere. Our contributions provide an improved and more effective solu-
tion for seismic ray tracing in complex velocity models.
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Theory and Method

We can represent a ray tracing in a v(s) medium by a system of differential equations (Margrave,
2003)

® —vfsp 0
dp 1
% = —U(S)Vrs),

where ¢ is time, s is position coordinates (z,z), and p is the slowness vector (p,,p.). Solving
this system in time using a second-order Runge-Kutta method, we were not only able to derive the
raypath variables utilized in model output (z, z, p., p.) but also their respective derivatives needed
in the calculation of the physics loss, which helps the model acquire knowledge of the fundamental
physical equations of the ray tracing problem.

In this work, we employ an inhomogeneous P-wave parametric velocity model given by the equa-
tion v(xz,2) = 1.5 + 0.3z + 2. To ensure consistency with the grid-based numerical solvers used
in our ray tracing, we first get a coarse subset of the complete velocity array via a constant stride
of 20, and then reconstruct the complete velocity model by two-dimensional B-spline filtering. This
approach enables building a continuous and differentiable velocity field even from sparsely sampled
or discontinuous models. Notably, our proposed method, which incorporates B-spline filtering for
velocity model reconstruction, is not limited to analytical or continuous models; it can also be suc-
cessfully applied to complex and non-smooth velocity models, thus making it a versatile approach for
application to both synthetic and real geological settings.

The loss function is a combination of the data loss and the weighted physics loss. Data loss Lyse
is the Mean Squared Error (MSE) between the predicted output of the PIKAN model and ground truth
raypath variables. The physics loss is computed via automatic differentiation (autograd) to obtain the
time derivatives %, %, ddL;, dfl’; from the model outputs and compare them with their analytically
determined values. An initial condition loss is also included to ensure that at ¢t = 0 the model
predictions for position match the known source location. The physics loss can be expressed as
the weighted sum of the squared discrepancies between the predicted and ground truth derivatives,
along with the penalty associated with the initial conditions (Lc):

n

1
ﬁphysics = ﬁ Z Ws

2

+ Lic, )

dt dt

where r; = [z, 2;, Pz, , D2, ], T; is the model prediction and w; is a sample-specific weighting factor
to emphasize critical regions with low raypath data density. Therefore, the total loss function used
during training is defined as:

Etotal = LMSE + Ephysics (3)

Its performance was evaluated by Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), Root Mean Squared Error (RMSE), and the R-squared statistic (R?).

Results

Initially, we investigated the influence of the grid size hyperparameter on the accuracy of the PIKAN
model in seismic ray tracing problems. From Figure 1, we can see that decreasing the grid size (i.e.,
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Target
Impact of Grid Size on Model Evaluation Metrics mm X mmm Px == Model Avg.
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Mean Absolute Error Mean Absolute Percentage Error
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Grid Size Grid Size

Root Mean Squared Error R-squared

0.991
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Figure 1: Influence of the grid size hyperparameter on PIKAN performance for seismic ray tracing.

4 and 8) resulted in substantial accuracy improvements in predictions based on considerably lower
errors (MAE, MAPE, and RMSE) and higher R? scores. However, increasing the grid size to 20 or 24
led to a decline in the model’s performance. Following the identification of grid size 4 as optimal, we
trained and tested the convergence behavior of the model further. Training showed quick initial drops
in the total loss and physics loss, with subsequent stabilization. In addition, training and validation
data losses were always low and closely following one another during training, indicating that the
model learned the underlying physics constraints well without overfitting.

Metric X 4 Px Pz
R? 0.9998 0.9997 0.9952 0.9991
MAPE 0.0036 0.0042 0.0069 0.0086
MAE 0.0051 0.0038 0.0016 0.0015
RMSE 0.004690 0.002431 0.001778 0.003084

Table 1: Evaluation metrics for PIKAN predictions on seismic ray tracing.

Table 1 illustrates a snapshot of the final evaluation metrics of every output of the model (X,
Z, Px, and Pz). The very high R2 values invariably and the extremely low error metrics illustrate
the accuracy of the model in forecasting seismic raypaths. Besides, the qualitative assessment
based on the visual comparison shown in Figure 2 also substantiates the quantitative results. The
PIKAN model-calculated raypaths follow closely the reference raypaths calculated with the Runge-
Kutta scheme, offering further evidence of its performance and robustness in seismic ray tracing.

Conclusions

We have proposed a novel approach for seismic ray tracing based on Physics-Informed Kolmogorov-
Arnold Networks (PIKANSs), which incorporate physical constraints directly into the training process
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Figure 2: Comparison between PIKAN predicted raypaths (dashed lines) and reference raypaths
generated by the Runge-Kutta method (solid lines) across different initial conditions.

to predict the raypaths in a parametric velocity field. We tested our method by evaluating its predic-
tions against classical Runge-Kutta numerical integration, demonstrating strong agreement in both
trajectories and their derivatives. Including initial conditions such as source position and shooting
angle as model inputs was crucial, enabling the model to generalize well to raypaths not seen during
training, demonstrating effective interpolation capabilities. The results confirm that the use of phys-
ical constraints during training and the data-informed regularization contributed to highly accurate
predictions and maintained strong training stability, even in the presence of sparse data. For this
application, the use of small grid sizes allowed more accurate learning of physically consistent and
smooth raypaths. These findings highlight the potential of PIKANs as an accurate and cost-effective
alternative for seismic ray tracing. Future work includes extending the method to non-parametric
velocity models, integrating advanced deep learning techniques to enhance generalization, and ex-
ploring model interpretability to support geophysical analysis.
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