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Abstract Summary

This study presents a comparative analysis of two model-based seismic inversion methods:
Maximum Likelihood (ML) and Sparse Spike (SS). A synthetic seismic cube was created using
a Point-Spread Function (PSF) and the Butterworth wavelet to evaluate the performance of
these techniques under controlled conditions. Metrics such as Mean Absolute Percentage Error
(MAPE) and Pearson correlation coefficient were applied to assess the results. The findings
revealed that the ML method consistently achieved better accuracy, showing lower errors and
higher correlation with the reference model, while SS exhibited limitations in handling high-
frequency variations and produced noisier results. These results emphasize the suitability of ML
for acoustic impedance inversion, especially in scenarios characterized by structural complexity
and low-frequency seismic data. Future research should focus on optimizing the SS algorithm to
broaden its applicability in geophysical contexts.

Introduction

Seismic inversion is essential for estimating subsurface elastic properties by integrating seismic
data with geological and petrophysical information (Adler et al., 2021; Lin et al., 2022). Among
the available approaches, model-based acoustic inversion is widely adopted in post-stack
workflows to retrieve acoustic impedance from seismic traces, using well logs as constraints
(Kushwaha et al., 2023). In this context, we compare the Maximum Likelihood and Sparse Spike
methods using synthetic datasets that replicate diverse geological settings. The analysis
considers both accuracy and robustness under frequency-limited conditions, aiming to identify
the more effective technique for complex interpretation scenarios (Ali et al., 2024).

Method and/or Theory

This study used a synthetic seismic cube (256°) generated via 2D convolution between
reflectivity and a Butterworth-based point-spread function (PSF). To simulate realistic conditions
for comparing Maximum Likelihood (ML) and Sparse Spike (SS) methods, a low-pass filter was
applied to create a 6 Hz low-frequency model for inversion input. Additionally, a 30 Hz
impedance model served as the reference for performance evaluation. The Butterworth wavelet
was generated using high- and low-cut filters, while the Ricker wavelet was defined by its peak
frequency of 30 Hz.

The inversion used linear modeling operators from PyLops to simulate the seismic-wavelet
convolution. L2-norm regularization was applied to stabilize the least-squares solution and
reduce noise sensitivity (Eq. 1).

(A) S(m) = |Gm — d|s — N|(m)] (B)S(m) = |Gm — d|; — A|(m)]

Equation 1 — (A) Objective function of the sparse spike inversion. (B) Objective function of the
sparse spike inversion.
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The SS method applied L1-norm regularization via the IRLS algorithm, which iteratively adjusted
model weights for stable convergence under noisy conditions (Eq. 2). Adjustments were made
to handle zero-residual elements and ensure computational stability.

Equation 2 — Objective function of the sparse spike inversion.

Inversion results were evaluated through both qualitative and quantitative analyses. Accuracy
was measured by Mean Absolute Percentage Error (MAPE), and linear correlation by the
Pearson coefficient, comparing inverted models to the reference. Visual assessments included
seismic sections and histograms of impedance values. Implemented in Python, this approach
enabled efficient handling of large datasets and a systematic comparison between ML and SS
methods.

Results
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Figure 1. Original synthetic session, showing the amplitude and the low-frequency impedance.
In Figure 1, amplitude data have intermediate frequencies, while low-frequency impedance

shows limited spectrum. This contrast highlights seismic inversion’s role in reconstructing
impedance and improving fault and discontinuity detection.
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Figure 2. Seismic section at trace cross-line 128, showing the Maximum Likelihood and Sparse-Spike
inversions with both wavelets.

In othe sections, ML showed less noise and better fit, especially in high-impedance zones. SS,
favoring sparsity, introduced more artifacts in discontinuous areas. Both methods, however,
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detected key faults between traces 50 and 100, confirming their effectiveness in complex
synthetic scenarios.

Quantitative Analysis

MAPE - Max Likelihood x Sparse Spike
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Figure 3. Comparative MAPE plot of the Maximum Likelihood and Sparse-Spike inversions

MAPE results (Fig. 3) showed ML inversion performed better, with 3.50% error using Ricker and
3.75% with Butterworth wavelets. SS inversion had higher errors, 5.63% (Ricker) and 6.04%
(Butterworth). Despite the data being generated with Butterworth, Ricker outperformed it,
indicating frequency content and low-frequency model adaptation challenges. SS’s lower
performance likely stems from convergence issues typical in impedance inversion.
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Figure 4. Pearson coefficient calculated based on a random sample corresponding to 0.01% of the data.
The sample has 16 thousand elements, selected from 16 million elements.

In Fig. 4, the dispersion of the original data and the inversions is observed, which was
performed using a random sample corresponding to 0.01% of the result. The lower dispersion in
the ML method is consistent with its higher average correlation. On the other hand, SS showed
greater dispersion, highlighting the method's difficulty in recovering high frequencies.

Conclusions

The results show that, for the synthetic dataset used, the Maximum Likelihood (ML) method
consistently outperformed Sparse-Spike (SS) in both qualitative and quantitative assessments.
ML produced seismic sections with less noise and better reconstruction near fault zones (Bosch
et al., 2010), while SS showed more dispersion and peak-focused artifacts that hindered
accurate impedance recovery (Zhang & Castagna, 2011). Quantitatively, ML achieved lower
MAPE values (3.50% with Ricker, 3.75% with Butterworth) compared to SS (5.63% and 6.04%),
and higher Pearson correlations (0.91 and 0.90 vs. 0.75 and 0.72). These findings highlight
ML'’s robustness and reliability for acoustic impedance inversion in controlled conditions, and in
this specific case. Still, given the use of synthetic data, further studies are needed to enhance
SS performance and validate these results in real-world applications.
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