

SBGf Conference

18-20 NOV | Rio'25

Sustainable Geophysics at the Service of Society

In a world of energy diversification and social justice

Submission code: 9PAQL4X0PZ

See this and other abstracts on our website: <https://home.sbgf.org.br/Pages/resumos.php>

Comparative Analysis of Model-Based Acoustic Seismic Inversion Methods

Wagner Lupinacci (GIECAR), Ana Schuerz (Universidade Federal Fluminense), Fabio Fernandes (GIECAR), André Luiz Albano (GIECAR / UFF)

Comparative Analysis of Model-Based Acoustic Seismic Inversion Methods

Please, do not insert author names in your submission PDF file

Copyright 2025, SBGf - Sociedade Brasileira de Geofísica/Society of Exploration Geophysicist.

This paper was prepared for presentation during the 19th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November 2025. Contents of this paper were reviewed by the Technical Committee of the 19th International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of the Brazilian Geophysical Society is prohibited.

Abstract Summary

This study presents a comparative analysis of two model-based seismic inversion methods: Maximum Likelihood (ML) and Sparse Spike (SS). A synthetic seismic cube was created using a Point-Spread Function (PSF) and the Butterworth wavelet to evaluate the performance of these techniques under controlled conditions. Metrics such as Mean Absolute Percentage Error (MAPE) and Pearson correlation coefficient were applied to assess the results. The findings revealed that the ML method consistently achieved better accuracy, showing lower errors and higher correlation with the reference model, while SS exhibited limitations in handling high-frequency variations and produced noisier results. These results emphasize the suitability of ML for acoustic impedance inversion, especially in scenarios characterized by structural complexity and low-frequency seismic data. Future research should focus on optimizing the SS algorithm to broaden its applicability in geophysical contexts.

Introduction

Seismic inversion is essential for estimating subsurface elastic properties by integrating seismic data with geological and petrophysical information (Adler et al., 2021; Lin et al., 2022). Among the available approaches, model-based acoustic inversion is widely adopted in post-stack workflows to retrieve acoustic impedance from seismic traces, using well logs as constraints (Kushwaha et al., 2023). In this context, we compare the Maximum Likelihood and Sparse Spike methods using synthetic datasets that replicate diverse geological settings. The analysis considers both accuracy and robustness under frequency-limited conditions, aiming to identify the more effective technique for complex interpretation scenarios (Ali et al., 2024).

Method and/or Theory

This study used a synthetic seismic cube (256^3) generated via 2D convolution between reflectivity and a Butterworth-based point-spread function (PSF). To simulate realistic conditions for comparing Maximum Likelihood (ML) and Sparse Spike (SS) methods, a low-pass filter was applied to create a 6 Hz low-frequency model for inversion input. Additionally, a 30 Hz impedance model served as the reference for performance evaluation. The Butterworth wavelet was generated using high- and low-cut filters, while the Ricker wavelet was defined by its peak frequency of 30 Hz.

The inversion used linear modeling operators from PyLops to simulate the seismic-wavelet convolution. L2-norm regularization was applied to stabilize the least-squares solution and reduce noise sensitivity (Eq. 1).

$$(A) S(m) = |\mathbf{Gm} - \mathbf{d}|_2 - \lambda |(m)|_2 \quad (B) S(m) = |\mathbf{Gm} - \mathbf{d}|_1 - \lambda |(m)|_1$$

Equation 1 – (A) Objective function of the sparse spike inversion. (B) Objective function of the sparse spike inversion.

The SS method applied L1-norm regularization via the IRLS algorithm, which iteratively adjusted model weights for stable convergence under noisy conditions (Eq. 2). Adjustments were made to handle zero-residual elements and ensure computational stability.

Equation 2 – Objective function of the sparse spike inversion.

Inversion results were evaluated through both qualitative and quantitative analyses. Accuracy was measured by Mean Absolute Percentage Error (MAPE), and linear correlation by the Pearson coefficient, comparing inverted models to the reference. Visual assessments included seismic sections and histograms of impedance values. Implemented in Python, this approach enabled efficient handling of large datasets and a systematic comparison between ML and SS methods.

Results

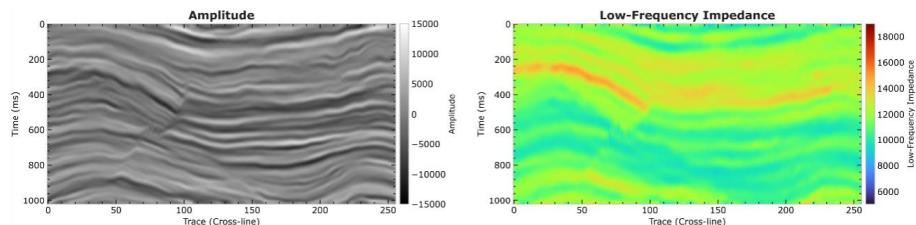


Figure 1. Original synthetic session, showing the amplitude and the low-frequency impedance.

In Figure 1, amplitude data have intermediate frequencies, while low-frequency impedance shows limited spectrum. This contrast highlights seismic inversion's role in reconstructing impedance and improving fault and discontinuity detection.

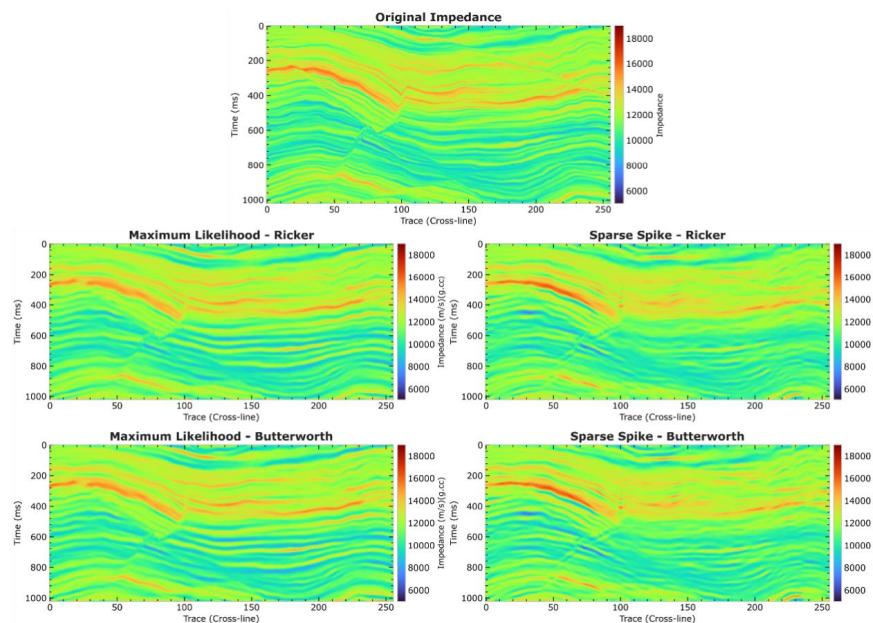


Figure 2. Seismic section at trace cross-line 128, showing the Maximum Likelihood and Sparse-Spike inversions with both wavelets.

In other sections, ML showed less noise and better fit, especially in high-impedance zones. SS, favoring sparsity, introduced more artifacts in discontinuous areas. Both methods, however,

detected key faults between traces 50 and 100, confirming their effectiveness in complex synthetic scenarios.

Quantitative Analysis

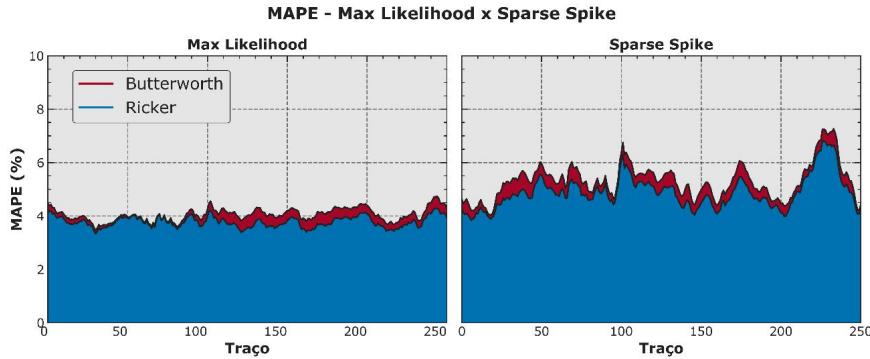


Figure 3. Comparative MAPE plot of the Maximum Likelihood and Sparse-Spike inversions

MAPE results (Fig. 3) showed ML inversion performed better, with 3.50% error using Ricker and 3.75% with Butterworth wavelets. SS inversion had higher errors, 5.63% (Ricker) and 6.04% (Butterworth). Despite the data being generated with Butterworth, Ricker outperformed it, indicating frequency content and low-frequency model adaptation challenges. SS's lower performance likely stems from convergence issues typical in impedance inversion.

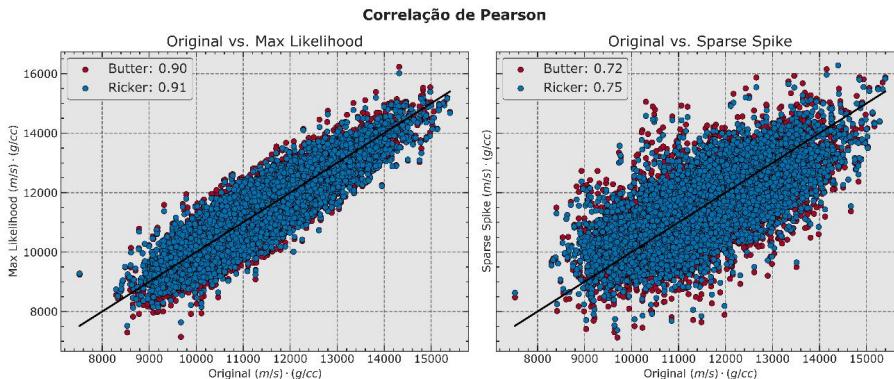


Figure 4. Pearson coefficient calculated based on a random sample corresponding to 0.01% of the data. The sample has 16 thousand elements, selected from 16 million elements.

In Fig. 4, the dispersion of the original data and the inversions is observed, which was performed using a random sample corresponding to 0.01% of the result. The lower dispersion in the ML method is consistent with its higher average correlation. On the other hand, SS showed greater dispersion, highlighting the method's difficulty in recovering high frequencies.

Conclusions

The results show that, for the synthetic dataset used, the Maximum Likelihood (ML) method consistently outperformed Sparse-Spike (SS) in both qualitative and quantitative assessments. ML produced seismic sections with less noise and better reconstruction near fault zones (Bosch et al., 2010), while SS showed more dispersion and peak-focused artifacts that hindered accurate impedance recovery (Zhang & Castagna, 2011). Quantitatively, ML achieved lower MAPE values (3.50% with Ricker, 3.75% with Butterworth) compared to SS (5.63% and 6.04%), and higher Pearson correlations (0.91 and 0.90 vs. 0.75 and 0.72). These findings highlight ML's robustness and reliability for acoustic impedance inversion in controlled conditions, and in this specific case. Still, given the use of synthetic data, further studies are needed to enhance SS performance and validate these results in real-world applications.

Acknowledgments

I would like to express my gratitude to Petrobras for providing the necessary resources, and to GIECAR and UFF for the infrastructure and support that enabled the development of this work.

References

Adler, A., Araya-Polo, M., & Poggio, T. (2021). Deep learning for seismic inverse problems: toward the acceleration of geophysical analysis workflows. *IEEE Signal Processing Magazine*, 38(2), 89-119. <https://doi.org/10.1109/msp.2020.3037429>

Lin, Y., Theiler, J., & Wohlberg, B. (2022). Physics-informed data-driven seismic inversion: recent progress and future opportunities.. <https://doi.org/10.1002/essoar.10511175.1>

Kushwaha, P., Singh, R., Maurya, S., & Rai, P. (2023). Prediction of petrophysical properties using post stack seismic inversion and geostatistical techniques over f-3 block, netherlands - a comparative study. *International Journal of Petroleum Technology*, 10, 53-70. <https://doi.org/10.15377/2409-787x.2023.10.5>

Ryan, H (1994). Ricker, Ormsby, Klauder, Butterworth — a choice of wavelets. *CSEG Recorder* 19 (7)

Cortiella, A., Park, K., & Doostan, A. (2020). Sparse Identification of Nonlinear Dynamical Systems via Reweighted ℓ_1 -regularized Least Squares. *ArXiv*, abs/2005.13232. <https://doi.org/10.1016/J.CMA.2020.113620>

Ali, M., Changxingyue, H., Wei, N., & Ashraf, U. (2024). Optimizing seismic-based reservoir property prediction: A synthetic data-driven approach using convolutional neural networks and transfer learning with real data integration. *Artificial Intelligence Review*, 58(1), 31. <https://doi.org/10.1007/s10462-024-11030-8>

Bosch, M., Mukerji, T., & Gonzalez, E. F. (2010). Seismic inversion for reservoir properties combining statistical rock physics and geostatistics: A review. *Geophysics*, 75(5), 75A165–75A176. <https://doi.org/10.1190/1.3478209>

Zhang, R., & Castagna, J. (2011). Seismic sparse-layer reflectivity inversion using basis pursuit decomposition. *Geophysics*, 76(6), W147–W158. <https://doi.org/10.1190/geo2011-0103.1>