

SBGf Conference

18-20 NOV | Rio'25

Sustainable Geophysics at the Service of Society

In a world of energy diversification and social justice

Submission code: A05JRVLDK5

See this and other abstracts on our website: <https://home.sbgf.org.br/Pages/resumos.php>

Regularization of Acoustic Full Waveform Inversion with Wasserstein Generative Adversarial Networks

Artur Januário (Federal University of Rio Grande do Norte)

Regularization of Acoustic Full Waveform Inversion with Wasserstein Generative Adversarial Networks

Copyright 2025, SBGf - Sociedade Brasileira de Geofísica/Society of Exploration Geophysicist.
This paper was prepared for presentation during the 19th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November 2025. Contents of this paper were reviewed by the Technical Committee of the 19th International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of the Brazilian Geophysical Society is prohibited.

Introduction

Multiparameter Full Waveform Inversion (FWI) suffers from crosstalk effects, which can be mitigated by regularizing the inverse problem. The regularization with the Wasserstein Generative Adversarial Network (WGAN) is capable of mitigating crosstalk in multiparameter FWI, outperforming many conventional methods. The objective of our work is twofold. First, we employ the WGAN as a regularizer in the acoustic FWI using well-log information as a prior. Second, we compare the inversion accuracy of WGAN regularization with the standard L2 norm.

Methods

The Wasserstein distance W_1 is a metric that compares two distributions by measuring the extent to which they overlap. For this reason, it is also called the Earth-Mover's distance. Since probability distributions are normalized, this distance can be interpreted as the number of trips necessary to move one distribution into the other. In particular, this metric offers distinct advantages over others, such as the Kullback-Leibler or Jensen-Shannon divergences, due to its topological construction.

In the context of seismic inversion, there are demonstrations regarding the superiority of WGAN as a regularizer, for example, in mitigating crosstalk in a multi-parametric anisotropic FWI. In this case, p-wave velocity and Thomsen parameters are inverted, resulting in more accurate results when compared to conventional L2 regularization. In this work, we use the W_1 distance between the current model parameter and that of the parameter at the well log locations using WGAN to regularize the FWI. We emphasize that the steps for training the WGAN are not computationally expensive.

Results and Conclusions

At this stage, we successfully implemented a WGAN neural network that estimates the Wasserstein distance and applied the FWI method to a simple velocity model. Our results are being fine-tuned, and we plan to make further comparisons with other regularization methods. Moreover, we intend to apply it for an elastic inversion in the future.