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Abstract Summary

Reverse Time Migration (RTM) generates terabyte-scale datasets in large-scale runs, necessitating
efficient data management. Error-bounded lossy compression techniques offer a promising solu-
tion by reducing storage needs while maintaining acceptable data accuracy. As lossy compression
evolves, rigorous testing in applications like RTM is essential. This study evaluates SPERR, a new
wavelet transform-based lossy compression framework, comparing it with established compressors
SZ3 and zfp to assess its effectiveness in managing RTM’s large data volumes.

Introduction

RTM, a key seismic imaging technique, generates large datasets requiring significant storage and
I/O operations. Lossy compression frameworks offer substantial storage reduction without compro-
mising results. Dmitriev et al. (2022) explored error-bounded lossy compression in acoustic RTM,
evaluating zfp, SZ3, and Bitcomp for compression ratios, throughput, and image quality. Huang
et al. (2023) introduced HyZ, a hybrid lossy compression method for RTM, improving performance
and data quality. Barbosa and Coutinho (2023) propose a dual strategy involving lossy and lossless
wavefield compression for parallel multi-core and GPU-based acoustic RTM, reducing data transfer
and storage needs while maintaining image quality. Kukreja et al. (2022) integrated checkpointing
with lossy compression for Full-Waveform Inversion, enhancing efficiency and scalability. Inspired
by these, we propose to integrate a wavelet transform-based lossy compressor into RTM to handle
memory limitations in large-scale simulations.

1 Error-bounded Lossy Compression

This overview compares SPERR, a transform-based open-source compressor, with two other open-
source compressors—zfp (transform-based) and SZ3 (prediction-based)—selected for their CPU
(de)compression support, aligning with our multi-core RTM software.

-zfp (Lindstrom, 2014) operates as a block-transform-based compressor, akin to the method
used in JPEG compression. Its approach involves employing a custom orthogonal transform on
data blocks, followed by encoding the transformed coefficients using specialized bitplane encoders.
This unique methodology enables zfp to achieve high compression ratios and speeds, thanks to its
optimized transform and encoding techniques.

-SPERR (Li et al., 2023) uses wavelet transforms to generate coefficients that compactly repre-
sent input data, with larger coefficients holding more information. Data reduction occurs during co-
efficient encoding (potentially leading to information loss) using SPECK (Tang and Pearlman, 2006).
SPERR identifies outliers exceeding a specified Pointwise Error (PWE) tolerance, records their po-
sitions, and calculates corrections with a SPECK-inspired algorithm. It encodes wavelet coefficients
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and outliers into separate bitstreams, which are merged and compressed losslessly with zstd (Collet,
2017) to produce the final output.

-8Z3 (Zhao et al., 2021) employs a prediction-based approach using multi-dimensional dynamic
spline interpolation, eliminating the need to store linear regression coefficients as in SZ2.1 (Liang
et al., 2018). Following prediction, SZ3 quantizes prediction errors and compresses the resulting
integers with Huffman encoding and zstd lossless compressor, enhancing compression ratios, espe-
cially for higher error bounds.

2 Reverse-Time Migration

The core concept of RTM involves a three-part process: (a) simulating the advancement of a wave
field forward in time through a suitable velocity model, (b) reversing the process by propagating the
recorded data backward through the same model, and (c) combining the results of these two steps
by applying an imaging condition. In our case, this simulation relies on the well known time-domain
formulation of the wave equation:

%aupm 1) — Vp(@.1) = f(2), (1)
where p(x, t) is the pressure field, v(x) the compressional wave velocity, « denotes the 2-D or 3-D
spatial coordinates, t the time in [0,77], and f(t) is a given source term. The V? represents the
laplacian and 9y, is the second-order temporal derivative. From the several available options for
acoustic imaging conditions, we use the cross-correlation normalised by the square of the source
illumination strength. The correlation images of all shots are summed up to get the image I(x):

the (.’I},t)
Zztps z, Ops(, 1) @

where p;(x,t) and p,-(x, t) are the source and receiver wavefields, respectively.

3 Numerical experiments

We used a subsection of the SEAM acoustic isotropic velocity model, depicting a sedimentary basin
bordered by salt. An 800-meter-deep water layer was added to mimic a moderately deep water
setting. The modified model size is 200x350x200 with a 20-meter sampling interval in all direc-
tions. Synthetic data were generated using an 8 Hz Ricker wavelet source with a 4 s recording
time, comprising 231 seismic shots sampled at 4 ms. All compressors were compiled with Intel
oneAPI 2023.2.1 (icc/icpc). Tests ran on a compute node with two 20-core Intel Xeon Gold 6148
processors, 384 GB memory, and RHEL 8. We used a parallel Fortran RTM code, integrating
SPERR and SZ3 via Fortran wrappers (available at https://github.com/ofmla/fortran-sperr
and https://github.com/ofmla/sz3_simple_example). We stored forward-modeled wavefields
on disk, reading them during backward propagation for imaging, even though nodes could store all
snapshots uncompressed. With a 3 km and 1 km maximum offset, we cropped the v,, model and ad-
justed it for boundary layers. Forward propagation generated 2032 snapshots (252x198x148 single-
precision floats each), requiring ~60 GB per shot uncompressed. We evaluated lossy compression
using point-wise absolute error as the error-bound (eb) type, which is supported by all tested com-
pressors. We tested eb values of 1E-4, 1E-5, and 1E-6. Figure 1 illustrates compressibility across 231
shots, with color gradients (dark to light) indicating shot index. SPERR (left subplot) at eb=1E-4 starts
with a high compression factor (>100000), drops within 500 time steps, stabilizes at 20000-30000,

SBGf Conference Rio’25 | rio25@sbgf.org.br p. 2/4


https://github.com/ofmla/fortran-sperr
https://github.com/ofmla/sz3_simple_example

iC SBGI Conference

18-20 nov | Ri0"25

=
o
el

.
)
™
e
=
o
2

E 3
3

n Factor

._.
o

2
n Factor

L
o

pressiol
i
pressio

Sompress\on.jactor
i
3

Com
S
)
©
o
™
s
\
Com

102 —

— ) - 1E-4 N T e— )= 164 4 o — b = 16-4
— eb = 1E5 —) b = 1E-5 s T — b = 1E-5
by Y [ by N

eb=1E6 E— b= 166 — =166
1 N t b =

—
1 ShotiD 23
Shot ID

L L L 101 L L
500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

Time step Time step Time step

Figure 1: Compression factor achieved by SPERR (left), SZ3 (center), and zfp (right) for 231 shots
across 2,032 time steps, with each snapshot compressed using different error bounds: eb=1E-4
(red), eb=1E-5 (blue), and eb=1E-6 (green).

and rises late, nearing initial levels; tighter bounds (eb=1E-5, eb=1E-6) follow a similar trend but with
lower factors. SZ3 (center subplot) shows a three-phase pattern for eb=1E-5 and eb=1E-6 (decline,
stabilization, late increase), but eb=1E-4 is unstable, suggesting failure. ZFP (right subplot) follows
the same pattern but with lower compression ratios. Compressibility tracks wavefield evolution: high
early and late due to zero-dominated data, lower mid-simulation as the wavefield spreads. At an error
bound of 1E-6, SPERR, SZ3, and zfp were evaluated for memory savings by summing compressed
byte streams across 231 shots (2032 snapshots each) and computing average compressed size per
shot. SPERR excels, achieving a total of 9 GB (avg. 0.039 GB/shot), a 1539:1 compression ratio,
and 99.94% memory savings (59.961 GB saved/shot). SZ3 yields 11.75 GB (avg. 0.051 GB/shot), a
1176:1 ratio, and 99.92% savings (59.949 GB saved/shot). ZFP, less efficient, totals 139.69 GB (avg.
0.605 GB/shot), with a 99:1 ratio and 98.99% savings (59.395 GB saved/shot). SPERR’s superior
compressibility reduces storage to 1.31 times smaller than SZ3 and over 15 times smaller than zfp.
However, when maintaining a specified eb tolerance, SPERR takes longer to compress data com-
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Figure 2: RTM images at y = 5.99 km. Top row (eb = 1E-5): (a) SPERR, (b) SZ3, (c) zfp. Bottom
row (eb = 1E-6): (d) SPERR, (e) SZ3, (f) zfp. Colorbar represents normalized image values using
TwoSlopeNorm!, with vmin/vmax set to +1 standard deviation of the image data.

" https://matplotlib.org/stable/api/_as_gen/matplotlib.colors.TwoSlopeNorm.html
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pared to zfp and SZ3. The figure 2 shows RTM images. At 1E-5 (top row), noise is more pronounced,
especially in (b) SZ3, with visible artifacts. At 1E-6 (bottom row), images appear similar, with reduced
noise overall but some residual noise at shallow depths, especially in () SZ3 and (f) zfp. SPERR (d)
remains the least noisy.

4 Conclusions

In this paper, we evaluated SPERR, an error-bounded lossy compressor for scientific data, against
SZ3 and ZFP for seismic imaging. At a fixed eb tolerance, SPERR typically achieves higher com-
pression ratios and comparable image quality but it requires longer compression time than zfp and
SZ3. When memory is a primary concern and performance is less critical, SPERR is the preferred
choice.
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