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Introduction

The North Brazilian Ridge (NBR) and Fernando de Noronha Ridge (FNR) are prominent
submarine volcanic features that stretch offshore along the Brazilian Equatorial Margin (Fig. 1).
While the FNR is usually linked to the Fernando de Noronha hotspot (O*Connor e Duncan, 1990;
Almeida, 2006), the NBR’s origin still remains debated, opened for distinct interpretations (Hayes
& Ewing, 1970; Miura & Barboza, 1973; Le Pichon & Hayes, 1971). Hypotheses put forward vary
from the suggestion that the NBR is the present expression of extinct spreading centers (Gorini,
1977; Azevedo, 1991). or the result of reactivation of segments of fracture zones (Sao Paulo
Fracture Zone - northern segment, and the Romanche Fracture Zone - southern segment; Bonatti,
1978; Azevedo, 1991). Having this undefined evolution scenario for the NBR in perspective, this
study addresses an evolution model based on integrated analyses by combining seismic
stratigraphy, chronostratigraphy, and plate tectonic reconstructions in the attempt to unravel their
magmatic evolution and tectonic controls.
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Figure 1: (a) The study area highlighting the North Brazilian Ridge, with its south (blue), central
(yellow) and north (green) segments, and the Fernando de Noronha Ridge (red). Bathymetric
map, LEPLAC 2019 base, presenting isobaths with 100 m intervals.

Method

The study is primarily based on seismic data from the LEPLAC Program (Plano de Levantamento
da Plataforma Continental Brasileira) acquired between 1987-2009 made available by the
Brazilian Navy. For the present study, 119 LEPLAC deep seismic sections (penetration up to 8-
10 s) were analyzed, focusing on magmatic bodies identified by high-amplitude limiting reflectors,
chaotic inner seismic facies, and onlap terminations of the sediment strata in contact with these
magmatic bodies. The study also had access to chronostratigraphic horizons (horizons dated
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from 2 to 66 Ma) provided by the Brazilian National Petroleum and Gas Agency (ANP) and
regional bathymetric maps compiled by the LEPLAC team (Alberoni et al., 2019). These data
were used to perform stratigraphic correlations of volcanic phases of the seamounts ridges within
the nearby marine sedimentary succession. Plate motion models (Seton et al., 2012) and
gravimetric data (Miller et al., 2022) also allowed us to reconstruct a possible hotspot track and
influence of specific fracture zone.

Results and Conclusions

The integration of seismic, geochemical, and plate reconstruction data provides a cohesive model
for Equatorial Atlantic volcanism, linking mantle dynamics to inherited tectonic frameworks. These
findings contribute to the long-standing debates on ridge origins and underscore the interplay
between deep mantle processes and crustal inheritance.

The structural analysis highlights the alignment of the NBR’s E-W segments with the Romanche
and St. Paul fracture zones, while the FNR is aligned with the Chain Fracture Zone (Fig. 1). Such
orientation is confirmed by linear gravimetric lows along the fracture zones (Fig. 2), strengthening
the hypothesis that these listopheric faults served as primary magma conduits for the ridges’
volcanism.
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Figure 2: Free-air gravity map of the South American portion of the Equatorial Atlantic (Topex
v29.1 data), displaying the continuity of oceanic fracture zones from the transform zone between
the Mid-Atlantic Ridge axes to the flanks of the CNB (S&o Paulo Fracture Zone, adjacent to the
northern segment, and Romanche Fracture Zone, connected to the southern segment) and the
CFN (via the Chain Fracture Zone). These features are highlighted by gravity lows marked by
white solid lines, and the inflection of crustal age isochrons (represented by thin black lines
labeled in Ma, based on estimates by Miiller et al., 2008).

Coupled seismic and chronostratigraphic analyses allowed us to identify that the ages of the
magmatic activity decrease from ~80 Ma (the oldest NBR volcanism) to 2 Ma (the youngest FNR
volcanism), which leads to a magmatic activity eastward migration at a rate of ~22.1 km/Ma. The
chronological distribution of volcanic activity across seamount ridges is as follows (Fig. 3):

(i) Pre 66 Ma, volcanic bodies occur as thick, isolated flows (£1.4 s twitt thick) located West of
Marajé Seamounts;

(i) Between 66 - 38 Ma, volcanic bodies occur as s parse flows (0.6 s twtt thick) distributed
between the Gurupi Guyot and the Ceara Seamounts;
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(iii) Between 38 - 14.9 Ma, the peak of volcanic activity (0.1-0.5 s twtt thick) occurs along the
NBR’s Central-South segments, with flows exceeding 1.5 s twtt thick;
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(iv) Volcanic activity <2 Ma occurs as thin flow layers (0.05-0.1 s twtt thick) near the FNR. These
ages are correlatable with the possible hotspot final stages.

The key hypothesis of this work is that the NBR and the FNR originated from prolonged volcanic
activity similar to that of a typical hotspot (~85 Ma to present), along with an eastward-moving
magmatic migration reflecting the South American Plate motion. In such a scenario, the NBR and
the FNR evolutions reveal themselves to have been structurally controlled by preexisting fracture
zones and pre-existing Mesozoic spreading centers (Gorini, 1977; Azevedo, 1991), emphasizing
the important role of lithospheric weaknesses in focusing volcanic activity.
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Figure 3: Correlation between the volcanic flows identified in this study and the ages of volcanic
rocks described in the literature. Note the relationship between the mapped magmatic events
(solid colored lines) and the radiometric dates obtained from bibliographic analysis (points,
sourced from Guimaraes et al., 2020; Perlingeiro et al., 2013; Misuzaki et al., 2002; Knesel et al.,
2011; Sousa et al., 2013; and Silveira, 2006). Base morphological map: LEPLAC, 2019.
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