

SBGf Conference

18-20 NOV | Rio'25

Sustainable Geophysics at the Service of Society

In a world of energy diversification and social justice

Submission code: BNX8J6KLNQ

See this and other abstracts on our website: <https://home.sbgf.org.br/Pages/resumos.php>

Time-Domain Viscoacoustic Wave Equation Based on Kaniadakis κ -Deformed Statistics

Marcos Gadelha (LAPPS; UFRN; Brazil), João Medeiros Araújo (Universidade Federal do Rio Grande do Norte), Carlos Da Costa (LAPPS; UFRN; Brazil), Sérgio Da Silva (1LAPPS; UFRN; Brazil; 2CNR; PoliTO; Italy), Tiago Barros (Universidade Federal do Rio Grande do Norte), Samuel Xavier-de-Souza (LAPPS; UFRN; Brazil)

Time-Domain Viscoacoustic Wave Equation Based on Kaniadakis κ -Deformed Statistics

Copyright 2025, SBGf - Sociedade Brasileira de Geofísica / Society of Exploration Geophysicist.

This paper was prepared for presentation during the 19th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November 2025. Contents of this paper were reviewed by the Technical Committee of the 19th International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of the Brazilian Geophysical Society is prohibited.

Introduction

Seismic waves when interacting with the subsurface suffer from two attenuation effects due to the anelasticity of the medium, which are phase dispersion and energy dissipation, impacting the resolution of seismic imaging techniques such as Reverse Time Migration (RTM) and Full Wave Inversion (FWI). In order to insert losses in the medium, we use a complex velocity model. With this, the quality factor Q arises, whose function is to quantify these effects on wave propagation. In this work, we develop a new viscoacoustic wave equation in the time domain based on κ -statistics, which effectively models wave propagation in attenuating media. This equation allows observing the phenomenon in different ways, since it is possible to decouple the phase dispersion and dissipation terms, being able to modify the simulation of medium attenuation through the Q factor, which is explicitly integrated into the equation. Therefore, this approach improves the accuracy of seismic modeling, ensuring better image quality and interpretation of underground structures.

Method

Initially, we treat the viscoacoustic wave equation in the frequency domain from the complex velocity model. In this step, we propose a Kaniadakis κ -logarithm approximation that simulates attenuation effects. Following this, we apply the inverse Fourier transform to obtain a new viscoacoustic wave equation in the time domain. The finite difference method is used to discretize the model in the computational domain. Furthermore, to fit the simulation of an attenuating medium, the quality factor Q is changed to observe how the wave propagation varies with the phenomena of phase dispersion and energy dissipation. Finally, we compare the numerical solution of the viscoacoustic wave equation in the time domain with the analytical Green's function in a homogeneous medium.

Results and Conclusions

The numerical results obtained show that the viscoacoustic wave equation in the time domain based on the κ -statistic simulates the effects of phase dispersion and energy dissipation at different Q values, especially at low quality factors where the attenuation effects are intense. As a way of validating the method, the numerical solution between the viscoacoustic wave equation in the time domain and the analytical Green's function is compared, showing that the method accurately describes the attenuation effects.