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Abstract Summary

Manual picking on Semblance spectra is the standard process to determine normal moveout (NMO)
velocities. Stacking of NMO corrected CMP gathers allows to approximate traces in a zero-offset
section. To speedup this process and increase its reliability, we use a Recurrent Neural Network. The
input to the proposed network is a time window of a CMP section with fixed duration, with its starting
time being interpreted as a zero-offset time. Output of the RNN is the classification of the initial time
of the window as a zero-offset time corresponding to a reflection event or not. Our network started
to work after little training with very few models. The first numerical tests demonstrate the potential
of the proposed methodology to detect events and determine their correct zero-offset traveltimes.

Introduction

Primary reflections from subsurface interfaces recorded in a Common Midpoint (CMP) geometry
exhibit approximately hyperbolic traveltime curves. Semblance analysis is used to determine whether
the recorded traveltimes follow a hyperbolic trajectory for a given zero-offset time ¢y and normal
moveout (NMO) velocity v,,.,,.. Semblance values range between [0, 1], and the objective is to select
optimal points based on peak semblance values (see, e.g., Yilmaz, 1987). However, this approach
presents several challenges: Multiple-reflection events may exhibit high semblance values, more
than one primary event can exist for a given ¢y creating a conflicting-dip scenario and selection of
appropriate picking requires some expertise to avoid systematical errors (bias).

In traditional manual picking, analysts simultaneously select (¢o, vnmo) pairs. However, manual
picking is a time-consuming, high-cost task. Our approach starts at a RNN predicting only the zero-
offset times ¢y associated with a primary refection event. The NMO velocity can then be estimated,
in a second step, based on the associated semblance values.

Zero-offset traveltime estimation using an RNN

Our choice of Recurrent Neural Networks (RNNs) in NMO velocity analysis is inspired by the foun-
dational work of Biswas et al. (2019). Rather than using a simpler RNN architecture, we employ a
variation known as a Gated Recurrent Units (GRU) (Chung et al., 2014), which we refer to generi-
cally as our RNN for simplicity. For our application, each input sequence consists of seismic traces
extracted from a Common Midpoint (CMP) gather (see an example in Figure 1). We extract a sliding
window of dimensions (N, N;,) from a CMP section. In our examples, we choose

* N; =100 (time samples, given a temporal sampling rate of dt = 0.004 s),
« N, =61 (traces, starting from 600 m and offset spacing of dh= 20 m).
Before entering the RNN architecture, the input data are normalized.
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The RNN ar-
chitecture follows a to
many-to-one struc-
ture, as illustrated
in Figure 2. In
this framework,
the input data are
treated as an or-
dered sequence.
Each column in
this window repre-
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Figure 1: Example in-
put window used in train-
ing, with temporal duration
sents an element t,inq4, containing a single
of the sequential reflection event.

input. The RNN processes these elements while
maintaining hidden states that depend on both
the current input and previous sequence ele-
ments. These hidden states are composed of
neurons in R'%Y. The final output is a classifi-
cation, indicating whether the window’s starting
time ty corresponds to a zero-offset event or not.

For the RNN to provide results at a desirable
scale, we used a sigmoid as the final activation
function in the classification RNN. This choice is
standard for classification tasks as it outputs val-
ues between 0 and 1, which can be interpreted as
a probability. For our purpose, we then impose a
threshold of 0.5 to classify the starting time of the
window as a zero-offset event time or not.
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Figure 2: RNN architecture. Output is a classifi-
cation (0 or 1) that ¢, (associated with the input
window) corresponds to the zero-offset traveltime
of a primary reflection. If ¢y is classified as an
event, the associated v,,,,,, can be estimated in a
second step.

Let W (to, m;) denote the selected CMP window with start time ¢, and midpoints m;, C(W (to, m;))
the output of the classification RNN, ¢, ; € {0,1} expected label. The loss function used is cross

entropy, given by

1

Le(©) = — > —log(C(W (to,m:); ©c))to.i »

i=1

(1)

where O, represents the classifier network weights and NV, the batch size for stochastic optimization.

We modeled CMP data for training the
networks via SU’s finite difference mod-
elling, using a Ricker wavelet with peak
frequency of f, = 10 Hz. Five different
types of constant velocity models with v =
1.5,2.0,2.5,3,3.5 km/s and Np = 12
dipping reflectors were used. One typical
models is shown in Figure 3. For all ve-
locity models, velocity in each subsequent
layer increases by 0.1 km/s. The training
dataset covers all zero-offset times of in-
terest.
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Figure 3: One of the five velocity models used to gen-
erate CMP data for training the RNN network. Velocity
starts at v9 = 1.5 km/s and increases by 0.1 km/s at

each subsequent layer.
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Implementation and training of the
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RNN network were done with Tensorflow API. Network optimization utilized the Adam Optimizer
with a batch size of NV, = 100 and 879.400 pairs of CMP input slices and their corresponding scalar
outputs. We trained the classifier RNN using 15 epochs and learning rate a@ = 10~%.

Results

Primaries only

After training, we tested our RNN on a
model with starting velocity v =2 km/s
and a constant vertical gradient of
dv/dz 0.4/s (see Figure 4). Aquisi-
tion was done using SU’s Kirchhoff mod-
elling in the CMP’s 4 — 10 km with spac-
ing dm = 0.05 km betweem each CDP
and Ricker wavelet with f,cqr = 10 Hz.
Therefore, the data contain only primary
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Figure 4: Velocity model of constant vertical gradient,
velocity starts at the surface at v = 2 km/s and the
vertical gradient is dv/dz = 0.4/s. White lines are the
artificial reflectors used in Kirchhoff modelling.

reflection events. Results of the prediction of the RNN in the central part of the model are shown in
Figure 5. We can see that almost all events are correctly predicted. In spite of their weak amplitudes,
even the bow-ties from the synclinal structures of the first and second reflectors are partially detected

by the network.
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Figure 5: a) Zero-offset section for the gradient model. b) Result of the predicted zero-offset time

mask of the RNN.

Full wavefield

To further test the RNN capacity, we used
a more realistic velocity model (Figure 6)
and SU’s Finite difference modelling to
generate CMP data containing the full
wavefield with all primaries and multiples.
The aquisition was done between 1.23
and 7.77 km with a spacing of dm
0.06 km between CMPs. Prediction of the
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Figure 6: Velocity model used to test the RNN with finite
difference data.
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RNN is presented in Figure 7. The first impression is acceptable, all events have been detected by
the network. However, at some positions failures are visible, possibly due to an imperfect window
size. Moreover, the first event is rather weak and followed by a spurious event. It is to be expected
that more extensive training with a larger variety of models will further improve these results.

0.0
05
104

15

Time [s]

2.0

2.5

3.0

3.5 .
1.23 2.25 3.27 4.29 5.31 6.33 7.35 1.23 2.25 3.27 4.29 5.31 6.33 7.35

Midpoint [km] Midpoint [km]

Figure 7: a) Zero-offset section for the velocity model of Figure 6. b) Result of the predicted zero-
offset time mask of the RNN.
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Conclusions

We have designed a recurrent neural network to determine zero-offset traveltimes from CMP sec-
tions. Our first results are promising, demonstrating the potential of the method. To train our network
we need only a small number of simples with plane dipping reflectors. Further training with additional,
more complex models, should help to improve the network accuracy. Given that convergence of the
network happens at just 15 epochs, probably more data can still help.
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