

SBGf Conference

18-20 NOV | Rio'25

Sustainable Geophysics at the Service of Society

In a world of energy diversification and social justice

Submission code: DA0WN54KJP

See this and other abstracts on our website: <https://home.sbgf.org.br/Pages/resumos.php>

Effects of Inefficient Demagnetization on Isothermal Remanent Magnetization Curves of Weak Samples

Daniele Brandt (Universidade de São Paulo), Plinio Jaqueto (Observatório Nacional), Marina Kuhn Queiroz (Universidade de São Paulo), Julia Massucato-Silva (Universidade de São Paulo), Julia Sobral Coutinho (Universidade de São Paulo)

Effects of Inefficient Demagnetization on Isothermal Remanent Magnetization Curves of Weak Samples

Please, do not insert author names in your submission PDF file

Copyright 2025, SBGf - Sociedade Brasileira de Geofísica/Society of Exploration Geophysicist.

This paper was prepared for presentation during the 19th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November 2025. Contents of this paper were reviewed by the Technical Committee of the 19th International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of the Brazilian Geophysical Society is prohibited.

Isothermal remanent magnetization (IRM) curves are essential for characterizing rock magnetic mineralogy, but their reliability depends critically on the sample's initial magnetic state. This study examines the impact of ineffective demagnetization before IRM acquisition, focusing on weak samples. A total of 90 curves were measured in 150 steps using a vibrating sample magnetometer (VSM), following two demagnetization protocols: (i) alternating field in a shielded device, and (ii) alternating field generated by the VSM's electromagnets. The latter resulted in residual remanence and distortions in curve shape, potentially causing systematic interpretation errors, particularly in weak samples. Simulations based on the Stoner-Wohlfarth model confirmed that ill-demagnetization can affect IRM curve shape. These results highlight the importance of applying effective and standardized demagnetization procedures, especially when working with weak samples. Supported by PRPI-USP.