

SBGf Conference

18-20 NOV | Rio'25

Sustainable Geophysics at the Service of Society

In a world of energy diversification and social justice

Submission code: GA9KNDVBAM

See this and other abstracts on our website: <https://home.sbgf.org.br/Pages/resumos.php>

A regularized version of the Kuwabara-Kono force scheme for 2nd order convergence in DEM simulations of granular materials

Gabriel Nóbrega Bufolo, Yuri Sobral

Please, do not insert author names in your submission PDF file

Copyright 2025, SBGf - Sociedade Brasileira de Geofísica/Society of Exploration Geophysicist.

This paper was prepared for presentation during the 19th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November 2025. Contents of this paper were reviewed by the Technical Committee of the 19th International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of the Brazilian Geophysical Society is prohibited.

Abstract

The Discrete Element Method is a technique widely used to simulate multi-particle systems, in particular granular materials. For conservative systems, the integration of the equations of motion is often performed via a Verlet-type method of order two, due to its second order accuracy and near energy conservation properties. However, when dissipative forces are included, such as in simulations of granular materials, the Verlet method no longer behaves as a second order method. For instance, when using the popular Kuwabara-Kono force scheme, the order of the Verlet method decreases to 1.5, due to the singular behavior of the damping force during particle collisions. In this work, we propose a regularization of the Kuwabara-Kono force model via mollification. We show numerically that the Verlet method combined with this regularized force model can integrate collisions with second order accuracy and that the coefficient of restitution of the system increases as a function of the regularization parameter