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Abstract  

One of the most significant improvements in model building and seismic imaging has been the incorporation 
of elastic wave propagation in full waveform inversion. We have extended Dynamic Matching Full Waveform 
Inversion (DM FWI) from acoustic to elastic medium resulting in FWI images that are structurally better 
focused with a higher resolution compared to the acoustic version. This approach has been mostly a single 
parameter inversion that focuses on inverting the P wave velocity through frequency staging, thus reflectivity 
is derived by utilizing the derivative in the orthogonal direction to the structure from the inverted velocity. 
Recently, we developed an elastic FWI approach that jointly inverts the background P-wave velocity and the 
reflectivity by separating the wavelength scales in the gradient to minimize parameter crosstalk. We have 
applied these approaches to sparse Ocean Bottom Node (OBN), and to streamer data with improved results 
versus the acoustic implementations. These methods can be cascaded for a robust estimation of properties. 
In this paper, we discuss the algorithms and demonstrate the benefits of their application with field data 
results.   

Introduction 

Since the original proposition of Full Waveform Inversion (FWI) for model building (Tarantola, 1984), many 
developments have significantly advanced the technology. These improvements can be broadly categorized 
in enhanced robustness of the algorithms, cycle skipping mitigation to avoid local minima, optimization 
approaches to improve convergence, model regularization and augmented physics. These have also been 
coupled with advancements in seismic acquisition including surveys with ultra-long offsets, full azimuth and 
the use of marine sources that extend the frequency bandwidth towards low and ultra-low end. The net effect 
is an increase in image resolution and a reduced uncertainty of the inverted model contributing to reservoir 
characterization.  To manage cost, sparse node acquisition and simultaneous shooting have become 
common practices. While this type of acquisition has proved a high cost-benefit ratio, high resolution imaging 
has relied on a tighter spatial sampling of small angles. 

The successful application of acoustic FWI to sparse OBN data has been documented in several publications 
(e.g., Huang et al., 2023). DM FWI relies on maximizing the match between the field and synthetic data to 
construct extract a high-resolution velocity model that predicts the observed data. This method has been 
recently extended to the elastic case (Liu et al., 2025). The enhancement in physics   enables to produce a 
better match to the field data in the presence of high impedance contrasts such as salt boundaries, especially 
at relatively shallow targets. This also applies to any case where wave propagation with the acoustic 
assumption deviates from the elastic response, such as the presence of amplitude anomalies in AVO 
studies. In the work of Liu et al. (2025), the compressional velocity, vp, is inverted, while density and shear 

wave velocity,  and vs, are respectively estimated through empirical information with well constraints, where 
such information is available. After frequency staging, FWI Image or FWI derived reflectivity (FDR), is 
obtained directly from the velocity field by computing a spatial derivative in the orthogonal direction to the 
dip of the reflector.  

Alternatively, in a multiparameter (MP) elastic FWI, the P-wave reflectivity can be jointly inverted with the P-
wave velocity (Huang et al., 2025). This method is based on a reformulation of the elastodynamic wave 
equation in terms of P-wave reflectivity instead of density. In contrast with the use of an empirical density 
model, the reflectivity is determined from the surface seismic data. Furthermore, the initial reflectivity is 
updated within the FWI framework.  Accordingly, the other key element is the scale separation of the FWI 
gradient to reduce crosstalk between background velocity and reflectivity during the inversion.        

In this work, we discuss single and multiparameter elastic FWI implementations with the dynamic matching 
cost function. We illustrate the benefits of these approaches with field data examples.       

Methods 

The elastic FWI with the dynamic matching (DM) cost function is described in the works by Macesanu et al. 
(2024) and Liu et al. (2025). This cost function aims to maximize the phase match between the recorded 
and synthetic data using a multidimensional cross-correlation.  This allows a significant reduction in the 
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sensitivity to noise and amplitude mismatch effects during the inversion.  For the single parameter elastic 
inversion, the starting velocity model is generally obtained from a smoothed version of a legacy model or 
from low-resolution reflection tomography. The initial density and S-wave velocity models are computed from 
P-wave velocity using empirical relations and well log information where is available. The inversion focuses 
on inverting P wave velocity, while the other two parameters (density and S-wave velocity) are updated 
passively using the empirical relations. 

The theory of the MP elastic FWI for jointly invert for P-wave velocity and reflectivity is explained in detail in 

Huang et al. (2025). One of the motivations of the approach is to use reflectivity rather than density, a 

parameter that is difficult to determine from surface seismic data (Whitmore 2020). The elastodynamic 

equation provides a seismic response equivalent to that provided by the conventional formulation.  The P-

wave reflectivity is updated using the same FWI framework. As in the acoustic case (Yang et al., 2021), the 

joint inversion mitigates the crosstalk between the background P-wave velocity and the reflectivity. This is 

achieved for the elastic case, following a similar procedure based on scale separation in the FWI gradient 

described by Whitmore and Crawley (2012) and Ramos-Martinez et al. (2015).    

To illustrate the significance of the enhancement in physics, in Figure 1 we compare the sensitivity kernels 
for velocity and reflectivity for the elastic DM FWI and their equivalent assuming acoustic propagation. These 
sensitivity kernels were computed from an intermediate angle trace corresponding to the elastic response 
for a Class II AVO anomaly, as shown in Figure 1a.  For comparison, the acoustic response is shown in 
Figure 1b. Figures 1c and 1e show the velocity and reflectivity kernels computed from the elastic DM FWI . 
In Figures 1d and 1f, we show the kernels computed from acoustic propagation. Notice the phase variation 
of the velocity kernels when inaccurate physics are utilized in the acoustic result (Figure 1d). These phase 
differences can also be observed in the acoustic propagation, when density is assumed to positively 
correlate with the velocity contrast at the interface.   

 
Field data examples  
 
 OBN examples 

We applied acoustic and elastic single parameter FWI to a sparse OBN data from the Gulf of Mexico. The 

data was acquired with a maximum offset of 45 km, and receivers were sparsely placed on the ocean floor 

at 1.2 km intervals in both horizontal directions. Two source vessels with triple sources each were combined 

to allow for the recording of low frequency signal below 2 Hz. The hydrophone data after debubble and basic 

denoise was used as input to acoustic and elastic FWI up to a maximum frequency of 12 Hz. The final 

velocity models and the corresponding FWI images are shown in Figure 2. Compared to acoustic DMFWI 

(Figure 2a), elastic DMFWI simulates more accurately the phase and amplitude of the wavefield, which 

results in reduced salt halos, sharper salt boundaries, better defined salt feeders and enhanced definition of 

geological inclusions. Notably, the elastic DMFWI image (Figure 2b) offers significant improvements in areas 

with poor illumination beneath salt. 

The second example shows the application of the multiparameter approach to a OBN data in deep-water 

Santos Basin, offshore Brazil. This dataset consists of 954 nodes covering an area of approximately 111 

km2 with sources covering about 345 km2. FWI was performed starting at 2 Hz and up to the maximum of 

25 Hz using data with minimal pre-processing. In Figure 3, we show the comparison of an inline and a depth 

section, with panels a) and c) showing the inverted velocity model and reflectivity from the multiparameter 

acoustic inversion, and panels b) and d) display the same corresponding sections from the elastic inversion. 

The acoustic algorithm produces a less focused boundary at the top of the salt with spurious variations in 

velocity at the interface. Consequently, the inverted reflectivity exhibits a less defined salt boundary (Figure 

3c). In contrast, the elastic algorithm produces a more focused boundary in velocity with a higher resolution 

at the top of the salt (Figure 3b). Likewise, the inverted reflectivity corresponding to the elastic case shows 

enhanced resolution for the salt boundary (Figure 3d). Figures 3e and 3f compare a depth slice of the two 

inverted reflectivity models, where the elastic result in Figure 3f clearly shows a more focused image and 

improved resolution at the salt boundary. Note, in multi-parameter DM FWI, the reflectivity is directly inverted 

from the data and the velocity model contains only long wavelength components that control the kinematics 

while the short wavelength portion appears in the reflectivity.  
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 Narrow azimuth streamer example 

The third example corresponds to streamer data also acquired in deep-water offshore Brazil. In this 

geological setting located in the Sergipe-Alagoas basin. The water depth ranges between 1500 to 3200 m. 

The data were acquired with a narrow azimuth survey using a 12-cable configuration with a maximum inline 

offset of 8100 m. As in the OBN data examples, we applied minimal preprocessing comprising basic denoise 

and debubble. The maximum frequency in the inversion is 25 Hz. The initial P-wave velocity model was built 

from reflection tomography. The initial S-wave model is computed from an empirical relation. The reflectivity 

model is constructed and refined within the inversion frame.  In Figure 4a, we show the RTM image 

overlaying the initial P-wave velocity model from tomography. In Figure 4b, we show the inverted reflectivity 

overlaying the inverted background velocity using the elastic multiparameter FWI. A significant uplift in 

resolution is observed from the inverted reflectivity compared to those of the conventional imaging workflow. 

Reflectors below the high-impedance volcanic plugs in the basin show enhanced continuity and resolution 

for the inverted reflectivity. Figures 4c and 4d compare one depth slice of the RTM image using the initial 

velocity and the inverted reflectivity.  There is a significant improvement in the resolution of the inverted 

reflectivity comprising enhanced fault delineation and sharpening of the high-impedance contrast events. 

 

Conclusions 

We show that Elastic FWI produces sharper images than those obtained from acoustic FWI in geological 

settings with the presence of complex salts bodies or volcanic rocks. This success has been explained as a 

more accurate description of the physics in wave propagation where phase variations due to density and 

shear-wave velocity contrasts may occur. Most successful case studies have resulted from OBN 

acquisitions, while success with streamer data has been reported less. This might be due to the limitations 

of reflection angles which tend to be narrower, especially in steep dips.   We present elastic FWI results with 

single and multiparameter FWI approaches, superior to the acoustic counterpart of these methods. The 

implementation of the multiparameter inversion method reduces parameter crosstalk, resulting in a 

reflectivity image with reduced artifacts. 
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Figure 1 Seismic responses for a two-layer model using a) elastic and b) acoustic propagation. P-wave 
velocity sensitivity kernels computed for an intermediate angle corresponding to the trace pointed by the 
arrow using c) elastic and d) acoustic propagation; the corresponding P-wave reflectivity kernels are shown 
in e) and f) for the elastic and acoustic propagation, respectively.   

 

Figure 2. Gulf of Mexico OBN data: a). Velocity model of 12Hz acoustic DMFWI overlaying the corresponding 
FWI Image and b) Velocity model of 12Hz elastic DMFWI overlaying the corresponding FWI Image.  

 

Figure 3. Santos basin MP FWi example: One inline of the inverted a) velocity and c) reflectivity models 
using the acoustic MP FWI algorithm. The corresponding line of the inverted b) velocity and d) reflectivity 
models using the elastic MP FWI algorithm. Depth slice of acoustic (e) and  elastic inversion (f).  
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Figure 4. MP FWI example of narrow azimuth data. a) RTM image overlaying the initial velocity model; b) 
inverted reflectivity overlaid on the inverted background model from the MP elastic approach. Depth slices 
for the c) conventional RTM image using preprocessed data and the d) inverted reflectivity using MP 
elastic FWI algorithm.  
 

 
 

 


