

SBGf Conference

18-20 NOV | Rio'25

Sustainable Geophysics at the Service of Society

In a world of energy diversification and social justice

Submission code: GM8J9KQWMA

See this and other abstracts on our website: <https://home.sbgf.org.br/Pages/resumos.php>

Utilization of MASW and MAM Methods for Subsurface Characterization and Monitoring of a tailings dam

**João Paulo Barros (Centro de Pesquisa em Geofísica Aplicada (CPGA/UFRJ)), Maria Mariana
Marques (Centro de Pesquisa em Geofísica Aplicada (CPGA/UFRJ)), Bernardo Leite, Ewerton
Rodrigues (MOSAIC), Igor Gama (MOSAIC), Ricardo Telles (MOSAIC), Marco Braga
(CPGA-UFRJ), Thiago Oliveira (MOSAIC)**

Utilization of MASW and MAM Methods for Subsurface Characterization and Monitoring of a tailings dam

Copyright 2025, SBGf - Sociedade Brasileira de Geofísica/Society of Exploration Geophysicist.

This paper was prepared for presentation during the 19th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November 2025. Contents of this paper were reviewed by the Technical Committee of the 19th International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of the Brazilian Geophysical Society is prohibited.

Introduction

Geophysical methods have been increasingly employed in dam monitoring, including techniques such as electrical resistivity and Ambient Noise Seismic Interferometry (ANSI). Some advantages of these methods over traditional geotechnical instrumentation include broader spatial coverage, and the large volume of data generated during field surveys. These data enable the development of models which, when combined with geological and geotechnical characterization, allow for comprehensive interpretations of the structure. In this context, this study explores the geophysical method of Multichannel Analysis of Surface Waves (MASW) to identify potential low-velocity zones.

Method and/or Theory

Multichannel Analysis of Surface Waves (MASW) is a non-destructive technique widely used to investigate the shear wave velocity (V_s) profile as a function of depth with the aim of providing the velocity profile of S-waves (i.e., seismic stratigraphy) along the dam structure. Seismic wavefronts generated by a source propagate along the surface and penetrate the subsurface, being recorded by a series of geophones arranged in a linear array. That offers broader spatial coverage, enabling the acquisition of multiple 1D profiles and the generation of 2D sections. This method was applied in conjunction with the Multichannel Array Microtremor (MAM) analysis, which records ambient vibrations generated by natural sources. In this study, nine geographically coincident MASW and MAM sections complementary in depth were analyzed along the BL1 dam part of the Tapira Mining Complex (CMT), located in the state of Minas Gerais, Brazil.

Results and Conclusions

The results from the integrated MASW and MAM profiles enabled subsurface investigations down to depths of 90 meters. These techniques provided complementary information about the conditions of the embankment and beach materials of a tailings dam. Overall, a gradual increase in shear wave velocity with depth was observed, attributed to the increasing degree of material compaction. Based on the obtained velocities, the subsurface was classified into three distinct zones: Low Velocity Zones (LVZ), Intermediate Velocity Zones (IVZ), and High Velocity Zones (HVZ).