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Abstract Summary

This work presents a method for estimating the seismic quality factor (Q)) from surface reflection data
by formulating an inverse problem based on the convolutional model. The method directly param-
eterizes the model as a function of a spatially varying @-factor and seeks the values that minimize
the mean square error between the observed seismic trace and the synthetic trace generated by the
model. Attenuation is incorporated into the inversion using the Kolsky-Futterman formulation. The
scenario assumes known source and reflectivity functions, with the Q-factor varying across geolog-
ical layers but remaining constant within each layer. The inversion is performed using the Adaptive
Moment Estimation (Adam) optimizer, and the initial results show that the proposed method accu-
rately estimates the Q)-factor and reconstructs the seismic response.

Introduction

To generate high-resolution seismic images, it is essential to accurately account for both energy dis-
sipation and velocity dispersion effects. One common strategy is the application of wave-propagation
reversal techniques, such as inverse @ filtering, which depend on reliable estimates of the subsur-
face Q-factor. Although many existing methods rely on Vertical Seismic Profile (VSP) data (Cheng
and Margrave, 2012), estimating ) from surface reflection data is often more practical and broadly
applicable. Several techniques have been proposed for this purpose, including enhanced log spec-
tral ratio methods (Liu et al., 2022), interferometric approaches using VSP data (Matsushima et al.,
2015), and time-frequency analysis techniques (Liu et al., 2024).

This work presents a novel method for estimating the Q-factor from surface reflection data by
formulating an inverse problem based on the convolutional model (Takahata et al., 2012). Unlike
conventional approaches, the proposed method explicitly parameterizes the convolutional model as
a function of the spatially varying @-factor and adjusts its values to match the synthetic trace to
the observed data. A key strength of this approach is its flexibility: different attenuation models
can be seamlessly incorporated into the same inversion framework. The inversion is performed by
minimizing the mean square error between the observed and estimated traces using the Adaptive
Moment Estimation (Adam) optimizer. To assess the method’s performance, we apply it to synthetic
data generated using the frequency-independent Q)-model proposed by Kjartansson, as described
by Ursin and Toverud (2002), assuming that ) varies across geological layers but remains constant
within each layer. For the inversion, we adopt the Kolsky-Futterman model (Wang, 2006), enabling
us to explore the effects of model mismatch in the estimation process.

SBGf Conference Rio’25 | rio25@sbgf.org.br p. 1/4



C SBa Conference

18-20 nov | Ri0"25

Theory and Method

According to Ergun (2019), seismic data x(¢) can be described as the convolution of the source
wavelet s(t), a non-stationary function a(t, 7) modeling attenuation, and the reflectivity series r(t):

z(t) = s(t) x a(t,7) © r(t), (1)

where x and ® denote stationary and non-stationary convolution, respectively, and 7 is the travel
time in the medium. The discrete form of Eq. 1 is:

x = SAr, )

where r is a vector of length IV, built from the discretized reflectivity series; Sis a (N, +Ns—1) x N,
Toeplitz matrix formed by shifting the discretized wavelet s(t) along the matrix columns; and A is the
N, x N, attenuation matrix, which is a function of the Q)-factor.

To construct A, two assumptions are made: the medium is linear, and the depth axis is divided
into sub-layers of length Az, = v, (w,)A7, where v, (w,) is the phase velocity in the n-th layer
and Ar is the constant travel-time step. Under these assumptions, the wavefield is represented as
a superposition of plane waves at fixed angular frequency w (Futterman, 1962), which leads to an
inverse Fourier transform operation. Thus, the amplitude at time ¢ in the n-th layer is:

Uy (t) = F~1{ S(w) exp —iATij(w)vj(wr) . 3)

Jj=1

where S(w) is the spectrum of s(¢), and k;(w) is the wavenumber in the j-th layer. Using the
convolution property of the Fourier transform, this can be rewritten as:

un(t) = s(t) * an(t), (4)
with:
an(t) = F 1 {exp | —iAT i: kj(w)vj(we)| p - (5)
j=1

This function describes how the source wavelet s(t) is attenuated upon reaching the n-th layer. To
account for the attenuation across all layers, the attenuation matrix is defined as follows:

A = [ao ap e aNT_l] s (6)

where each column a,, is a discretization of Eq. 5 for the corresponding layer n. The choice of the
(-model is defined through expressions for k;(w), which control the attenuation behavior (Wang,
2006). The proposed Q-factor estimation method parameterizes A using a vector q of length N,.,
where each element corresponds to the Q-factor of a layer. A synthetic trace is generated using
Eq. 2, and q is optimized to minimize the squared ¢>-norm between the estimated and observed
traces:

1
min — ||SAr — xobs||§ . (7)
a 2
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Results

To evaluate the proposed @-factor estimation algorithm, a synthetic seismic trace x,1,s Was gener-
ated using the non-stationary convolutional model in Eq. 2. The matrix S and the reflectivity vector r
were constructed using the data shown in Figures 1a and 1b. The attenuation matrix was constructed
using the wavenumber defined by the Kjartansson model for seismic attenuation, which considers
the Q-factor to be independent of frequency (Ursin and Toverud, 2002). The true Q-factor profile
dobs IS shown in Figure 2a, and the resulting seismic trace x,ps is shown in Figure 2b.

For the estimation, S and r are assumed to be known, making the Q-profile the only unknown.
The Kolsky-Futterman model (Kolsky, 1964) was selected for inversion due to its broad compatibility
with other attenuation models (Ursin and Toverud, 2002). The initial guess qg is uniformly set to
100, representing a low-attenuation medium with no layer-to-layer variation. The estimated profile
q after 150 iterations is shown in Figure 2a; the resulting traces xgo, X, and x,ps are displayed in
Figure 2b; and the cost function evolution is depicted in Figure 2c¢, where most of the error reduction
occurs within the first 50 iterations. The curve then gradually stabilizes, indicating that the optimizer
converges to a near-optimal solution with minimal improvement beyond iteration 100.
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Figure 1: Parameters used to generate the synthetic seismic data.
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Figure 2: Results of the Q-factor estimation procedure.
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Conclusions

This work proposed a flexible method for estimating the seismic quality factor @ from surface reflec-
tion data, formulated as an inverse problem based on the convolutional model. The method was
applied to a single synthetic seismic trace, assuming known reflectivity and source wavelet. The in-
version adopted the Kolsky-Futterman model, while the data were generated using the Kjartansson
model, which is known to be highly compatible with Kolsky-Futterman.

The results demonstrate that the proposed approach accurately reconstructs the seismic trace
and provides reliable estimates of the layered Q-profile, even in the presence of moderate model
mismatch. The estimated @ values closely follow the true layerwise profile, confirming the method’s
ability to capture attenuation variations across the medium.

These findings reinforce both the effectiveness and the model-dependence of @-factor estima-
tion, underscoring the importance of interpreting 2 within the context of the assumed attenuation
model. As future work, we plan to extend the method to blind deconvolution, allowing for the simul-
taneous estimation of (), the source wavelet, and the reflectivity. Other goals include investigating
different attenuation models for both data generation and estimation, in order to better understand
the impact of model mismatch on the inversion results, and performing tests under more realistic
conditions.
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