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Abstract Summary

Seismic data can exhibit non-Gaussian noise characteristics in certain geological environments, un-
dermining the Gaussian assumption typically employed by classical signal processing techniques.
This paper proposes a robust blind deconvolution approach for seismic signals contaminated with
impulsive noise, modeled using a-stable distributions. The method is formulated through the mini-
mization of the £,-norm of the residual error, providing enhanced robustness to outliers compared to
traditional ¢>-norm-based methods. To promote sparse reflectivity, an ¢;-norm regularization term is
added to the cost function, which is defined based on a classical convolutional model of the seismic
trace.

Introduction

Traditionally, seismic deconvolution is formulated as an estimation problem based on the minimiza-
tion of the mean squared error (¢3-norm), under the assumption that the noise affecting the data is
Gaussian (Robinson and Treitel, 1981). However, in complex geological environments, seismic data
may be contaminated with impulsive non-Gaussian noise (spikes) during acquisition, significantly un-
dermining the Gaussian assumption (Lima, 2022; Yue and Peng, 2015). A more appropriate model
for this type of noise is the family of a-stable distributions, which generalize the Gaussian by al-
lowing for heavy tails and better capturing the statistical behavior of impulsive disturbances (Shao
and Nikias, 1993; Yue and Peng, 2015). In such scenarios, the ¢5-norm becomes unsuitable due
to its high sensitivity to outliers, often resulting in poor seismic resolution and the masking of true
reflectivity events.

Moreover, even when the additive noise is Gaussian, the distribution of the residual error in
the inverse problem may exhibit heavy-tailed behavior due to model mismatch, wavelet estimation
uncertainty, or regularization effects. Thus, adopting a robust cost function based on the £,-norm
can enhance performance by better accommodating these deviations.

In this work, we propose a novel blind deconvolution method based on the minimization of the £,,-
norm of the residual error, combined with /1-norm regularization to enforce sparsity in the reflectivity
profile. Unlike traditional approaches that rely on Gaussian noise assumptions and the ¢5-norm,
our formulation is designed to be robust against impulsive noise modeled by a-stable distributions.
The method simultaneously estimates both the seismic wavelet and the reflectivity series from the
observed trace. We validate its effectiveness through numerical experiments involving synthetic data,
highlighting the improved performance in scenarios with heavy-tailed noise. Additionally, we provide
a statistical analysis based on Monte Carlo simulations to quantify the robustness of the proposed
approach across different values of p.
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Method and/or Theory

In reflection seismology, the recorded signal can be described by the classical convolutional model.
In discrete time, a seismic trace is given by:

L
xn:wn*rn+'un:2rgwn_g+vm (1)
£=0
where n denotes the discrete time index, w,, is the emitted source signal (seismic wavelet), r,, is
the reflectivity function of the subsurface, and v,, is additive noise that accounts for environmental
disturbances and acquisition uncertainties. This model can also be expressed in matrix form as:

x=Wr+v=Rw-+v, (2)

where R and W are convolution matrices constructed from r and w, respectively.

In blind deconvolution, both the reflectivity r and the wavelet w are unknown, and only the seismic
trace x is available. In this work, an initial estimate of the wavelet is obtained directly from the seismic
trace under a zero-phase assumption. Because this estimation step is susceptible to contamination
by impulsive noise, a time-domain window of length L is subsequently applied to truncate and smooth
the estimated wavelet, serving as a simple yet effective form of preprocessing. The parameter L is
user-defined and should ideally match the time support of the actual source signal. Based on this
initial wavelet estimate, the objective is to jointly refine both unknown signals by minimizing a cost
function that reflects the discrepancy between the observed data and the modeled trace. To this end,
we define a cost function that integrates robustness to outliers and sparsity promotion. Specifically, it
minimizes the ¢,,-norm of the residual error to reduce sensitivity to impulsive noise, while an ¢,-norm
regularization term encourages sparsity in the reflectivity:

1 1 N-1 N-1
T, w) = ~[lellp + Allrlli = = > |on = &al” + A D |ral, (3)
p p n=0 n=0
where z,, is the reconstructed signal, A > 0 is a regularization parameter that balances the data
fidelity and sparsity terms, and p controls the robustness of the loss to heavy-tailed errors.
To minimize the cost function J(r,w) with respect to both r and w, we compute the partial
derivatives. The i-th component of the gradient with respect to r is:

P N—1
o J(r)=— ngo Wn—i€p, + Asgn(r;), (4)

where e, = |z, — Zn|P~tsgn(z, — &,). In matrix form, the gradient becomes:
0J(r)

or

and the gradient with respect to the wavelet is:
oJ(w)

ow

The gradient descent update rules for both the signals are then given by:

= -W'e, + Asgn(r), )
= -Rle,. (6)

il = ok~ (=WTe, + Asgn(rk)),
Wh = wh i, (~RTep)

where u, and p.,, are the step sizes for the reflectivity and wavelet updates, respectively.
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Results

0.1 Experiment

To evaluate the performance of the proposed deconvolution method, we conducted numerical sim-
ulations using synthetic seismic data. The reflectivity signal is defined as a sparse sequence with
nonzero coefficients at selected time indices, as shown in Fig. 1a. The synthetic seismic trace is
obtained by convolving this reflectivity with a Ricker wavelet of central frequency f, = 25 Hz and
length L = 51 samples, as illustrated in Fig. 1b. Impulsive noise is then added to the synthetic trace.
The noise is generated from an a-stable distribution with parameters o = 1.5, 5 = 0, § = 0, and
~ = 0.05, as shown in Fig. 1c.
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Figure 1: (a) Original sparse reflectivity sequence; (b) seismic trace obtained by convolution with a
Ricker wavelet (fo = 25 Hz); (c) seismic trace with added «-stable noise (« = 1.5, v = 0.05).
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Figure 2: Estimated reflectivity signals: (a) result for p = 2 (A = 2, p,, = 0.0001, p,, = 0.0001); (b)
result for p = 1.2 (A = 1.8, p,- = 0.0001, g, = 0.0001).

Figure 2 presents the estimated reflectivity signals obtained by minimizing the cost function for
two values of p. Fig. 2a shows the result for p = 2, corresponding to the classical least-squares
approach, while Fig. 2b shows the result for p = 1.2. In both cases, we performed N = 2000
iterations, and empirically selected the regularization and step-size parameters A, ti, € fiq.

0.2 Statistical Analysis

To evaluate the robustness of the proposed method, we conducted a Monte Carlo simulation using
the Pearson correlation coefficient (p) as the performance metric. The experiment used the same
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seismic trace described in Fig. 1b, with 20 different realizations of additive a-stable noise. We eval-
uated the performance of the blind deconvolution method for values of p in the interval 1 < p < 2,
with increments of 0.1.

Figure 3 shows the box plots of p obtained for different values of p in the interval [1.0,2.0]. As
p decreases from 2.0 to approximately 1.2, the median correlation steadily increases, indicating
improved robustness to impulsive noise. This reflects the method’s enhanced ability to suppress
outliers when using lower-order norms. However, for values of p closer to 1.0, the dispersion of results
becomes more pronounced, suggesting a potential trade-off between robustness and estimation
stability. These results highlight the importance of selecting an appropriate p value depending on the

expected noise characteristics.
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Figure 3: Box plot of the Pearson correlation coefficient (r) for each tested value of p, based on 20
Monte Carlo runs with a-stable noise realizations.

Conclusions

This work presented a robust blind deconvolution method for seismic signals under non-Gaussian
noise, modeled via a-stable distributions. The approach is based on /¢,-norm minimization with
{1 regularization to promote sparsity. Numerical results show that values of p < 2 yield better
reconstruction than the classical /5 approach, highlighting greater robustness to impulsive noise.
The results also emphasize the importance of selecting p according to the noise characteristics to
balance robustness and stability.
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