

SBGf Conference

18-20 NOV | Rio'25

Sustainable Geophysics at the Service of Society

In a world of energy diversification and social justice

See this and other abstracts on our website: <https://home.sbgf.org.br/Pages/resumos.php>

Application of neural network technique for identifying fluids in rocks reservoir of the Amazonas and Solimoes Basins

Lívia Auzier (Universidade Federal do Amazonas)
Joemes de Lima Simas (Universidade Federal do Amazonas)

Application of neural network technique for identifying fluids in rocks reservoir of the Amazonas and Solimoes Basins.

Copyright 2025, SBGf - Sociedade Brasileira de Geofísica/Society of Exploration Geophysicist.

This paper was prepared for presentation during the 19th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November 2025. Contents of this paper were reviewed by the Technical Committee of the 19th International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of the Brazilian Geophysical Society is prohibited.

Introduction

The current focus is to improve existing models, applying them specifically to the Amazonas and Solimoes basins. The initiative is relevant to the oil industry, as it allows the analysis of large volumes of data and the detection of complex patterns that are difficult to identify using traditional methods. The use of machine learning and artificial neural networks, which simulate the functioning of the human brain, allows the creation of systems that learn from data and improve their performance over time. The goal of the project is to develop robust and efficient computational tools that assist in both teaching and the exploration of natural resources, especially hydrocarbon.

Method and Theory

The research was based on bibliographic research to better understand the numerical methods. Then, data collection began in wells in the Solimoes Basin and the Amazonas Basin at the National Agency of Petroleum, Natural Gas and Biofuels (ANP) onshore <https://reate.cprm.gov.br/anp/TERRESTRE>. After analyzing the data, 2 wells were chosen: One in the Solimoes Basin: Well 3-RUC-8-AM, with a study area at a depth of 2,350m to 2,600m, and another in the Amazonas Basin: Well 1-ITP-1-AM. The data were entered into the LogView++ software. Another interface also used for the development of the algorithm is GitHub (<https://github.com/>), with the objective of creating or executing algorithms on its platform.

Results and Conclusions

The data from the two wells were plotted in the LogView++ software, where the analyses are being performed. The partial results demonstrate the potential of the proposed methodology for identifying rock layers with fluids. Thus, for the completion of the project, machine training will be essential to allow validation of the algorithm, which will be fundamental to assess the effectiveness of the tool.

Acknowledgments

To the INSTITUTIONAL PROGRAM OF TECHNOLOGICAL INITIATION SCHOLARSHIPS (PIBITI)/PROPESP/UFAM and especially to UFAM for the opportunity to develop Technological Initiation, and to the Petrophysics Laboratory of the Petroleum Engineering graduate program, where the research was carried out.

References

- ALMEIDA, L. E. Application of Computer Vision in Images Captured by Drones in Oil Platform Inspection, 2019.
- CAMARAL, R. G. Development of an algorithm for the application of machine learning to recognize salt dome-type geological traps in seismic sections, TCC, 2021.
- ANP (National Agency of Petroleum, Natural Gas and Biofuels). Available at: <<https://reate.cprm.gov.br/anp/TERRESTRE>>2024
- LogView++. (2024). LogView++: Well log data visualization and analysis software (Version 2024). Firagiel. Retrieved June 9, 2025, from <https://www.firagiel.com/logview++>
- SBGf (Brazilian Society of Geophysics) – Porosity estimation using nonparametric machine learning tools. Available at: <https://sbgf.org.br/mysbgf/eventos/expanded_abstracts/i/>.