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Abstract Summary

Seismic inversion is a challenging, ill-posed, and highly nonlinear problem. Neural networks have
shown great potential in addressing these challenges due to their ability to model the nonlinearity
of observed data. In this work, we propose a Physics-Informed Neural Network (PINN) architecture
for seismic inversion and wavelet estimation. The novelty of our approach relies in an architecture
designed to designed to estimate the wavelet during the inversion process. The model was tested
on the benchmark Marmousi2 synthetic dataset. The results indicate that our model outperforms
traditional neural network models on the synthetic dataset and accurately estimates the wavelet.

Introduction

Seismic inversion, an essential technique in geophysics, aims to determine the elastic and petro-
physical parameters of subsurface rocks based on seismic data. This process involves establishing
a mapping—typically nonlinear—between the observed data and the parameters to be inverted. Tra-
ditional model-based methods, while effective, are computationally intensive and rely on rigorous
physical theories (Dvorkin et al. (2014)). Neural networks offer an efficient alternative for mapping
these nonlinear relationships (Li et al. (2024),Rasht-Behesht et al. (2022)).

Physics-Informed Neural Networks (PINNs) present a neural network approach that integrates
physical knowledge directly into the training process. Unlike traditional neural networks, which typ-
ically learn from raw data, PINNs incorporate physical laws—such as partial or ordinary differential
equations—to guide and constrain learning, ensuring that the model produces predictions consistent
with established physical principles.

By embedding physical constraints, PINNs enhance both the efficiency and accuracy of seismic
inversion, overcoming the limitations of traditional methods and purely data-driven neural networks.
This enables a more robust and reliable characterization of the subsurface.

Method and/or Theory

The seismic inversion problem can be stated as the task of predicting elastic properties m given a
set of seismic measurements d, with a relationship defined by a physics-based forward model F in
the form d = F(m) + e, where e represents noise in the seismic measurements.

A standard deep learning approach can be used to estimate the inverse operator G ≈ F−1 by
minimizing the total error between the known properties and the estimated properties. This error is
called the property loss (LP) and is defined as
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Lp =

n∑
i

C(G(di, θ),mi), (1)

where C is a cost function, n is the number of training samples and θ represents the learnable
parameters of the deep learning model.

Physics-Informed Neural Network

To build a Physics-Informed Neural Network (PINN), an additional loss term (seismic loss) is intro-
duced, incorporating the physics embedded in the convolutional forward model:

Ls =

k∑
i

C(F(G(di)), di). (2)

This loss term is independent of the elastic properties from well log data, adding an unsupervised
training step and allowing for the use of all available seismic data during training.

Wavelet Estimation

The main contribution of this work is the development of a wavelet estimation network. The network
learns the wavelet in parallel with the training of the inverse network, similar to the reparameterization
network from Li et al. (2024). In fact, the training of both networks is correlated, as the same error is
used to update their weights.

The wavelet estimation workflow consists of an fully connected network. The network is trained to
generate the coefficients a0, a1, ..., bN of a Fourier series, which are then fed into the fourier equation

sN (x) = a0 +

N∑
n=1

(
an cos

(
2π

n

P
x
)
+ bn sin

(
2π

n

P
x
))

, (3)

and subsequently used in the forward model to generate synthetic seismic data. Finally, the total
loss function, considering the wavelet model, is given by a weighted sum of the property loss (LP),
seismic loss (LS) and wavelet loss (LW), resulting in Lt = αLp + βLs + γLw, where α, β and γ
weights the contribution of each term to the total loss.

Training Workflow

The training of the inverse network is divided into supervised and unsupervised steps (Fig. 1). In the
supervised step, training occurs using pairs of seismic data and elastic properties from well logs. This
training set is limited in size due to the scarcity of well log data. In the unsupervised step, the network
is trained exclusively with seismic data, allowing it to leverage all available seismic information.

In our work, we propose a simple fully connected network with no explicit inputs. Instead, its
first layer consists only of bias terms. This design choice is justified by the fact that the network is
learning a single wavelet, making it a constant function that does not require variable inputs.

Results

The synthetic data used in this work is the Marmousi2 dataset (Martin et al. (2006)), and the data
preparation follows the same steps as in (Alfarraj and AlRegib (2019)). First, the elastic impedances
are calculated for four angles of incidence: θ ∈ {0, 10, 20, 30}. Then the reflection coefficients
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Figure 1: Model training workflow: Arrows indicate the flow of information during the training. Lp , Ls and Lw are respectively the property loss, seismic loss and wavelet loss. In each
epoch the networks weights are updated via backpropagation algorithm using a linear combination of the presented losses.

are computed from these elastic impedances. To generate the synthetic seismic data, an Ormsby
wavelet (5-10-60-89Hz) is convolved with the reflection coefficient data. The final step is adding
normal white noise with 15dB to the seismic data to simulate measurement noise.

In the proposed training procedure, 10 evenly spaced traces of seismic and elastic impedance
were selected for supervised training, while all seismic traces were used for unsupervised training.

The qualitative results demonstrate a strong similarity between the predicted elastic impedance
(EI) and the expected EI, with a low absolute difference across all incident angles (Fig. 2).

Figure 2: First column shows the predicted elastic impedance by our model. Second column shows the reference elastic
impedance for comparison. Third column shows the absolute difference between first two columns.

Figure 3: In orange the Ormsby wavelet used to
generate the synthetic data. In blue the wavelet estimated
by our model.

Figure 4: In orange the spectrum of the Ormsby
wavelet used to generate the synthetic data. In blue the
spectrum of the wavelet estimated by our model.

Table 1 compares the performance of the PINN model against the standard NN model (setting
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β = 0 in Lt removes the contribution of the unsupervised training, transforming the PINN into a NN
model) on the test data. It shows that the PINN model results have a higher correlation with the
reference data, as well as better prediction performance, as suggested by the R2 coefficient.

Table 1: Comparison of NN and PINN performance at different angles

Metric Angle NN PINN

Correlation

0° 0.9310 0.9745
10° 0.9302 0.9741
20° 0.9268 0.9724
30° 0.9192 0.9678

R2 Coefficient

0° 0.7699 0.9033
10° 0.7683 0.9030
20° 0.7609 0.8991
30° 0.7419 0.8894

The overall results suggests that the PINN model not only predicts elastic impedance more ac-
curately then the NN model, but also effectively learns the wavelet used to generate the seismic
data with high fidelity (Fig. 3). Beyond that, it preserves the wavelet’s frequency spectrum (Fig. 4),
ensuring that the reconstructed seismic signal maintains its physical characteristics.

Conclusions

In this work, we proposed a new Physics-Informed Neural Network model for seismic inversion that
automatically estimates the seismic wavelet during the training. Our results shown that the PINN
model outperforms the traditional NN model in the Marmousi2 dataset, suggesting that PINNs are
more appropriate for the seismic inversion context. Future work will focus on extending the experi-
ments in real datasets, comparing the results with alternative wavelet generation methods.
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