

SBGf Conference

18-20 NOV | Rio'25

Sustainable Geophysics at the Service of Society

In a world of energy diversification and social justice

Submission code: LAZYPMZ4BG

See this and other abstracts on our website: <https://home.sbgf.org.br/Pages/resumos.php>

Glacier Analysis Using GPR Applied to Pine Glacier

Andrew Santos (Federal University of Pará (UFPA)), Jandyr Travassos (Universidade Federal do Rio de Janeiro), Ellen de Nazaré Souza Gomes (Federal University of Pará)

Glacier Analysis Using GPR Applied to Pine Glacier

Please, do not insert author names in your submission PDF file

This paper was prepared for presentation during the 19th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November 2025. Contents of this paper were reviewed by the Technical Committee of the 19th International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of the Brazilian Geophysical Society is prohibited.

Introduction

The use of Ground Penetrating Radar (GPR) in glaciers has proven to be a valuable tool for investigating internal structures, stratification, the presence of subglacial water and other geophysical characteristics. This data is essential for understanding glacier dynamics and their response to climate change. In this work, we are processing and analyzing GPR data collected from Pine Glacier in Antarctica, with the aim of identifying internal layers and heterogeneities that may indicate the presence of possible pockets of water or sediments and variations in ice density.

Method and/or Theory

The data was collected using a GPR with a frequency of 50 MHz. The processing software ReflexW was used for visualization and analysis and the data processing included: noise filtering, gain correction to compensate for signal attenuation at depth and Interpretation of reflectors.

Results and Conclusions

The processed data is expected to reveal the internal stratification of the glacier, indicating variations in snow and ice accumulation, flow structures, which may indicate glacial deformation, pockets of subglacial water or sediments, important for understanding glacier hydrology and dynamics and total ice thickness, useful for volume and mass estimates.

This study aims to contribute to the understanding of the glacier's internal structure, providing support for glacial dynamics models. In the future, integration with other geophysical techniques and climate data may enhance interpretation.