

SBGf Conference

18-20 NOV | Rio'25

Sustainable Geophysics at the Service of Society

In a world of energy diversification and social justice

Submission code: LYXAGQKB95

See this and other abstracts on our website: <https://home.sbgf.org.br/Pages/resumos.php>

Beyond Conventional Inversion: The Impact of High-Frequency FWI on Porosity Prediction

Schilling André (TotalEnergies), Kacem Chikh (TotalEnergies), Carolina Mendes (TotalEnergies), Bruna Bittencourt (TotalEnergies)

Beyond Conventional Inversion: The Impact of High-Frequency FWI on Porosity Prediction

Copyright 2025, SBGf - Sociedade Brasileira de Geofísica/Society of Exploration Geophysicist.

This paper was prepared for presentation during the 19th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November 2025. Contents of this paper were reviewed by the Technical Committee of the 19th International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of the Brazilian Geophysical Society is prohibited.

Introduction

With the rapid evolution of velocity optimization methods in seismic processing and imaging, seismic reservoir characterization must evolve to leverage the high-resolution velocity data now available.

Traditional deterministic inversion methods, which rely on a low-frequency model cut typically between 5-8 Hz and rely on medium-to-high frequency content from deconvolved amplitudes, are increasingly being challenged by the dynamic updates provided by Full Waveform Inversion (FWI) workflows. This study investigates the integration of absolute and high-frequency velocity information into the reservoir characterization workflow and identifies the frequency threshold beyond which conventional migrated data becomes more informative.

Method and/or Theory

This study focuses on a pre-salt region in the Santos Basin with multiple wells. FWI-derived velocity was compared with P-wave velocity logs from wells, calculating correlation coefficient across different frequency bands. Additionally, the correlation between these well logs and velocities obtained from conventional inversion workflows within the same frequency range was assessed.

It was also used the FWI velocity combined with a colored inversion from the FWI-image to rapidly estimate the porosity from the pre-salt section from classification. These results are then compared with porosity estimates from a legacy inversion based on older seismic acquisition.

Results and Conclusions

A low-pass filter applied to the well velocity logs at 20 Hz revealed a strong correlation with FWI velocity, which also showed a high correlation with well-derived porosity. Porosity classification based on FWI data demonstrated a higher correlation with actual well porosity compared to reservoir properties derived from the legacy inversion.

These findings highlight the potential of FWI-enhanced workflows to improve reservoir property prediction and characterization accuracy.