



# SBGf Conference

18-20 NOV | Rio'25

**Sustainable Geophysics at the Service of Society**

**In a world of energy diversification and social justice**

**Submission code: M6VLX4Y56W**

See this and other abstracts on our website: <https://home.sbgf.org.br/Pages/resumos.php>

## **A Deep Internal Learning Coordinate-Based Method for Seismic Interpolation in a Marine Survey**

**Lídia Maria Peregrino de Faria (Universidade Federal do Rio Grande do Norte), João Medeiros Araújo (Universidade Federal do Rio Grande do Norte), Daniel Pinheiro (Universidade Federal do Rio Grande do Norte), Carlos Cesar Silva (Universidade Federal do Rio Grande do Norte), Leonardo Machado (Universidade Federal do Rio Grande do Norte)**

## A Deep Internal Learning Coordinate-Based Method for Seismic Interpolation in a Marine Survey

Copyright 2025, SBGf - Sociedade Brasileira de Geofísica / Society of Exploration Geophysicist.

This paper was prepared for presentation during the 19th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November 2025. Contents of this paper were reviewed by the Technical Committee of the 19th International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of the Brazilian Geophysical Society is prohibited.

---

### Introduction

The analysis of seismic data rely heavily on densely sampled data. However, physical and economic constraints result in sparse data possessing few seismic traces, complicating subsequent accurate imaging. The most common approach is interpolating missing traces of a shot gather, at the expense of large amounts of training data to adequately represent typical seismic events. A more advanced strategy is based on deep internal learning methods. It focuses on interpolating complete missing shot gathers in irregularly sampled data, which offers significant economic, environmental, and implementation benefits in land survey acquisitions. In this regard, we employ a method termed coordinate-based seismic interpolation (CoBSI), which employs a continuous coordinate-based representation of the seismic wavefield, parameterized by a neural network. In this work, we adapt the CoBSI method to a two-dimensional acquisition geometry. Our objective is to reconstruct missing shot gathers from irregular marine surveys using a simple, but effective multilayer perceptron (MLP) trained solely based on the available seismic data.

### Method and/or Theory

The core idea of the CoBSI method consists of mapping a given coordinate  $\mathbf{v} = [t, x_r, x_s]$  into a wavefield amplitude  $r$  using a neural network  $M_\theta$ , i.e.,  $r = M_\theta(\mathbf{v})$ . The elements of  $\mathbf{v}$  denote time, receiver, and source positions, respectively. Moreover, we include in the MLP architecture nested Fourier features mapping functions  $\gamma$  acting on the coordinates set  $\mathbf{v}_i$ , where  $i$  index the elements of the training set. The MLP is trained in a self-supervised fashion by minimizing the mean squared error between the known amplitudes and the model predictions. After training, the acquired and interpolated amplitudes are mapped back to their respective coordinates to reconstruct the complete seismic dataset.

### Results and Conclusions

Our results indicate that the CoBSI method can accurately restore seismic data with different missing shot gathers ratios, including regularly, and irregularly source sampling. A limitation of CoBSI lies in the fact that it requires training an MLP for each new seismic dataset. In our future work, we will explore this limitation by enhancing the MLP's generalization ability on different data sets. Additionally, we plan to investigate the performance of CoBSI on a three-dimensional acquisition geometry and explore alternative strategies for tuning the positional encoding frequencies.