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Summary

Physics-Informed Neural Networks (PINNs) embed the governing differential equation in their loss
function, but often require thousands of trainable parameters. We introduce a Quantum-enhanced
PINN (QPINN) in which a single classical hidden layer is replaced by a four-qubit Variational Quan-
tum Circuit (VQC). Two one-dimensional wave-propagation problems validate the approach. In a
Hardy-constrained wave-equation test, the QPINN achieved lower error rates while using 71% fewer
parameters than the classical PINN. A second experiment with Gaussian-pulse excitation showed
similar results: the hybrid model obtained improved accuracy with approximately 70% parameter
reduction. These results demonstrate the viability of quantum layers as feature extractors in PINN
architectures.

Introduction

The modeling of partial differential equations (PDEs) with traditional methods like the Finite Differ-
ence Method (FDM) faces challenges in complex or high-dimensional settings. Physics-Informed
Neural Networks (PINNs) have emerged as a mesh-free, learning-based alternative that approxi-
mates PDE solutions by embedding physical laws directly into the network’s loss function (Raissi
et al., 2019). Boundary conditions in PINNs approach can be enforced through approaches such
as “Hard constraints,” where they are structurally imposed on the network output (Alkhadhr and
Almekkawy, 2023). These well-defined initial profiles and homogeneous boundary conditions enable
precise evaluation of the models’ ability to capture spatiotemporal wave evolution. Such simulations
are crucial for applications like seismic wave propagation modeling and subsurface property inver-
sion, where accuracy and computational efficiency are paramount. By employing physics-based
formulations and hybrid architectures, we explore how quantum layers can reduce model complexity
while preserving or enhancing solution fidelity.

Despite their advantages, PINNs often involve large numbers of trainable parameters, leading to
high computational costs and long training times. This motivates the search for more efficient archi-
tectures that balance expressiveness with reduced complexity. In this work, we investigate PINNs
and their quantum extensions (QPINNs) applied to the one-dimensional wave equation in geophysi-
cally relevant scenarios, expanding the experimental analysis performed in Fernandez et al. (2025).
Two experiments are considered: a sinusoidal initial condition and a transient Gaussian pulse. Both
applicable fundamental cases in acoustic wave propagation through homogeneous media, commonly
used to model seismic wave dynamics.
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Theory

Wave propagation in a one-dimensional medium without energy loss follows the classical wave equa-
tion governing small-amplitude acoustic disturbances:

∂2
t u(x, t) = c2 ∂2

xu(x, t), (1)

where u(x, t) denotes the wavefield and c is the constant wave speed. A well-posed problem requires
an initial profile u(x, 0) = u0(x), optionally the initial velocity ∂tu(x, 0), and boundary conditions on
the spatial domain Ω = [0, 1].

To evaluate the ability of PINNs and QPINNs to solve this equation, we consider two excitation
scenarios. In the first, the model is initialized with a known spatial profile and homogeneous boundary
conditions. Following the approach of embedding the initial and boundary conditions into the network
output, we define the solution as

û(x, t) = t x(1−x)Nθ(x, t) + u0(x),

where Nθ(x, t) is the raw output of the neural network. This formulation ensures that the boundary
conditions û(0, t) = û(1, t) = 0 and the initial condition û(x, 0) = u0(x) are automatically satis-
fied, reducing the loss function to the residual of the PDE. As a reference profile, we use a smooth
sinusoidal function u0(x) = sin(πx), which generates a standing wave and allows for analytical
comparison.

To investigate the network’s ability to model transient and localized phenomena, we perform a
second experiment using a compact, broadband Gaussian pulse as excitation. This is implemented
either as a spatially localized initial condition,

u0(x) = Ae
− (x−x0)2

2σ2
x ,

or as a boundary-driven source,

u(0, t) = Ae
− (t−t0)2

2σ2
t , u(1, t) = 0.

Gaussian pulses are standard benchmarks in wave propagation problems, as they allow for the
evaluation of dispersion, reflection, and wavefront dynamics in a controlled setting.

Quantum-Enhanced Physics-Informed Neural Networks (QPINN)

We propose the use of a hybrid QPINN architecture where the first classical hidden layer is re-
placed by a quantum layer, a variational quantum circuit (VQC). Initial classical layers perform the
pre-processing role where they receive the raw input coordinates, (x, t), and transform them into
an abstract feature set. This prepares the information for the quantum encoding step, where the
classically processed features parameterize the quantum layer. This is typically achieved by using
the classical data to control the rotation angles of quantum gates, which effectively “imprints” the
information onto a quantum state.

The quantum layer part acts as the trainable quantum analog of a classical hidden layer. The
circuits consist of a sequence of quantum gates whose parameters are systematically optimized dur-
ing the network’s training phase. Its architecture is fundamental to its performance, often comprising
alternating layers of single-qubit rotations and multi-qubit entangling gates, such as the CNOT gate.
Entanglement is a key resource, as it creates complex correlations between qubits, enabling the cir-
cuit to explore the vast computational Hilbert space and learn relationships that might be difficult for
a classical network to capture efficiently .
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Following the quantum processing within the quantum layer, the final state is measured to col-
lapse it into a set of classical values, such as operator expectation values. These outcomes form a
quantum-processed feature set. These features are then passed to the final classical layers, which
perform the post-processing task. Their function is to interpret the abstract, quantum-processed
information and map it to the physically meaningful values of the final solution, û(x, t). The entire
hybrid system is trained end-to-end; while the classical weights are updated with standard backprop-
agation, the quantum layer parameters are updated via specialized methods like the parameter-shift
rule.

Results

All models were coded in PyTorch (version 2.4.1), with the quantum layer built in PennyLane (version
0.38.0). Training was performed using the Adam optimizer, with a cosine-annealing learning-rate
schedule additionally employed in the Gaussian-pulse test. Each QPINN incorporated a four-qubit
circuit, and we benchmarked four common VQCs (alternate, cascade, cross-mesh, and layered)
retaining the best performer in every experiment.

In the first experiment with Hard constraints, a fully classical PINN containing 1 630 parameters
was trained for 3 000 epochs and reached an RMSE = 5.91 × 10−4. Replacing one hidden layer
by a VQC (layered ansatz) reduced the parameter count to 363 (71%) and improved the error to
1.64× 10−5 (Table 1).

Table 1: Performance compari-
son of various quantum layer ap-
proaches within the QPINN model
for the hard constraints experi-
ment.

Circuits Parameters RMSE
alternate 371 8.3662× 10−5

cascade 363 2.9872× 10−4

cross-mesh 363 7.5867× 10−5

layered 363 1.6395× 10−5

Figure 1: Representation of the
circuit layered VQC approach.

Figure 2: Comparison of wavefield (layered VQC) solutions
for different configurations. Top: wave snapshots at different

times. Bottom: full spatial wavefield distributions.

For the second experiment involving transient Gaussian-pulse propagation, we trained for 20 000
epochs. The classical PINN used 5 755 parameters and obtained RMSE = 0.192. The hybrid
QPINN, with 1 638 parameters, lowered the error to 0.041, a four-fold improvement while employing
only 29% of the parameters (Table 2).

Figures 2 and 4 shows the spatiotemporal evolution of the wave for the Hardy and Gaussian tests,
respectively. In the hard constraints experiment, the snapshot at t = 0.51 s reveals that the QPINN
curve is virtually indistinguishable from the analytical reference, whereas the classical PINN exhibits
a slight phase lag. The second experiment highlights an even clearer contrast: as the Gaussian
pulse propagates, the classical PINN gradually deteriorates, especially near the domain boundaries,
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while the QPINN continues to track the ground truth with better fidelity across all time frames.

Table 2: Performance compari-
son of various quantum layer ap-
proaches within the QPINN model
for the Gaussian pulse experiment

Circuits Parameters RMSE
alternate 1646 0.0557
cascade 1638 0.5071
cross-mesh 1638 0.0410
layered 1638 0.2637

Figure 3: Representation of the
cross-mesh VQC approach.

Figure 4: Gaussian pulse (cross-mesh VQC): wave snapshots
(top) and 2D solutions at t = 1.00 s (bottom).

Conclusions

This work introduced a hybrid Quantum-enhanced Physics-Informed Neural Network in which a sin-
gle classical hidden layer is replaced by a four-qubit quantum layer. Across two benchmark problems,
a Hardy-constrained wave equation and a Gaussian-pulse propagation, the QPINN achieved supe-
rior accuracy while using 71% fewer parameters required by a fully classical PINN. The reduction was
most pronounced with the layered ansatz, which, in the Hardy test, lowered the RMSE from 5.9×10−4

to 1.6×10−5 using just 363 trainable weights. These results highlight the potential of quantum layers
to act as powerful feature extractors inside physics-guided machine-learning models. Future work
will examine robustness on noisy quantum hardware and extension to higher-dimensional PDEs
problems, paving the way for resource-efficient, quantum-assisted solvers in scientific computing.
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