

SBGf Conference

18-20 NOV | Rio'25

Sustainable Geophysics at the Service of Society

In a world of energy diversification and social justice

Submission code: P9AR840LQM

See this and other abstracts on our website: <https://home.sbgf.org.br/Pages/resumos.php>

Beyond the Naked Eye: The Role of Spectral Imaging in RC Chipbox Analysis

**Victor Marini (Geotek do Brasil), Maria Masella (Geotek do Brasil), Raphael Prieto (Vale),
Juliana Barros (Geotek do Brasil), Hugo Oliveira (Cepemar), Mateus Martins (Geotek do
Brasil), Cesar Lucas (Vale)**

Beyond the Naked Eye: The Role of Spectral Imaging in RC Chipbox Analysis

Copyright 2025, SBGf - Sociedade Brasileira de Geofísica/Society of Exploration Geophysicist.

This paper was prepared for presentation during the 19th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November 2025. Contents of this paper were reviewed by the Technical Committee of the 19th International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of the Brazilian Geophysical Society is prohibited.

Introduction

Visual classification often leads to subjective interpretations when geologists are logging chip samples obtained by reverse circulation drilling. It is quite difficult to establish and standardize geological logging between different geologists to retrieve the fingerprint of geological processes. Indicators are limited, ambiguous, or biased by factors such as small sample volume, fragmentation, and colour misinterpretation along the borehole. Hyperspectral imaging is an effective tool in geological logging, offering detailed mineralogical insights beyond what is possible through visual observation, supporting data-driven interpretation of the samples. Additionally, it may reduce the need to send samples to elemental laboratory analyses, facilitating the geological workflow.

Method and/or Theory

This study evaluates the spectral response of more than 80.000 meters of reverse circulation (RC) chipbox samples using VNIR (400–1000 nm) and SWIR (1000–2500 nm) hyperspectral data analyzed under the Geotek Hyperspectral core imaging system-box (HCIS-B) from the hyperspectral core scanning facility in CTF-Vale (LEEAP).

Results and Conclusions

Applying hyperspectral analysis to RC samples helps provide clear contact boundaries defined by changes in lithology and detailed mineral quantification comprising geological domains of itabirites, carbonates and hematites. The results highlight the key role of spectral scanning in improving the reliability of RC-based geological descriptions and support the integration of such methods into early-stage exploration.