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Although the trust region method offers a mathematically natural and rigorous alternative 
to control the stability factor of the Levenberg-Marquardt nonlinear optimization algorithm, 
empirical criteria are commonly used for this task. In this work, we propose and test, on 
real data, an implementation of the full waveform prestack elastic seismic inversion using 
the Levenberg-Marquardt algorithm with trust region and compare it’s results with those 
obtained when the most common empirical criterion is used to control the stability factor 
of this algorithm. 

Introduction 

Nonlinear optimization methods are the mathematical engine of full waveform seismic inversion. 
Among the most widely used methods are those based on the information of the first derivative 
of the objective function (or error function), such as the gradient method, conjugate gradient and 
BFGS, and methods that use the information of the second derivative, such as the Newton or 
Gauss-Newton method (Fletcher, 1987), the latter being more robust and converging more 
efficiently. A comparison of such methods, specifically applied to the waveform inversion problem, 
can be found in Pratt et al. (1998). In general, such methods work by taking a certain step in a 
certain direction in the model space at each iteration. What changes is the strategy for defining 
the search direction and the criterion for defining the step size. Conventionally, the search 
direction is established first and the step size is obtained later. Thus, for example, in the gradient 
method the search direction is the opposite direction to the gradient vector of the objective 
function and the step size is normally established by searching for the minimum of this function 
along this direction. In the Newton algorithm the search direction involves the inverse of the 
Hessian matrix and in the Gauss-Newton algorithm an approximation of the Hessian matrix is 
used (Nocedal and Wright, 1999). 

The trust region method searches, at each iteration, for the minimum within a subdomain in the 
model space where the objective function is evaluated using an approximation function. If this 
function is able to adequately reproduce the values of the objective function within this subdomain, 
then the region is expanded; conversely, if the approximation is poor, then the region is 
contracted, since an approximation function is “trustworthy” only in the region where it provides a 
reasonable approximation. In this method, the radius of the trust region is first estimated and then 
a step direction that leads to the minimum of the approximation function within this region is 
determined (Sorensen, 1982). This method is also known as the constrained step method 
(Fletcher, 1987). 

The trust region method can be naturally implemented in the classical Levenberg-Marquadt 
algorithm, since there is a direct relationship between the stabilization factor λ and the radius of 
the trust region of the quadratic approximation of the objective function, on which this optimization 
algorithm is based. In this work, we propose and test a version of the presack elastic inversion 
method AVAFWI (Oliveira et al, 2018) that incorporates a version of the LM algorithm with trust 
region. This inversion algorithm is used to invert a real seismic data and the result is confronted 
with that obtained by the conventional implementation of the LM method, which is based on an 
empirical criterion to dimension the stability factor. 

Method  
 
In full waveform elastic inversion, all propagation effects are taken into account, however it is 
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necessary to assume a non-linear mathematical relationship between the data and the model 
parameters, given by: 

)(mSd =                                                                             (1) 

Where S represents a mathematical operator that connects the data vector d to the model 
parameter vector m. In the inverse problem in question, the subsurface is represented as a 1-D 
geological medium discretized into elementary layers, and the parameters to be determined are 
the P-wave velocity, S-wave velocity, and density in each elementary layer. The vector d 
represents a CMP set after undergoing seismic migration and being reordered by incidence angle. 
Once the observed data is known and s(m) is calculated, which is the seismic response of the 
earth as a function of the parameters, the inversion is done via nonlinear regression, that is, the 
model parameters are defined by fitting the data. Mathematically, this means that the solution 
consists of a vector m that minimizes an error function that measures the distance between the 
observed and calculated data: 

})({min ddmm T

m
∆∆== E                                                        (2) 

Where Δd is a vector whose elements are the difference between the calculated and the observed 
data: Δd=(d-S(m)) This error function uses L2 norm to measure the distance between the 
calculated and observed data (Menke, 1989). The objective function (2) can be expanded around 
m using Taylor series. This expansion can be truncated from the second-order terms which gives 
rise to a quadratic approximation for the error function around m, which will here be given as a 
function of δm: 
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Where g is the gradient vector that contains the derivatives of the objective function with respect 
to the model parameters: gi=∂E/∂mi. The matrix H is known as the Hessian and contains the 
second-order derivatives of the objective function with respect to the parameters:  
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The gradient vector and an approximation to the Hessian matrix can be calculated as a function 
of the sensitivity matrix, also known as the Jacobian: 

,T T= − ∆ ≅g 2J d H 2J J                                                              (5) 

The Jacobian is obtained from differential seismograms; Jik=∂Si/∂mk, for more details see Oliveira 
et all (2018). The Gauss-Newton method is obtained by seeking the minimum of EQ, that is, the 
point where ∂EQ /∂δm=0. Note that JTJ must be positive definite, otherwise the Gauss-Newton 
method becomes unstable. To get around this problem, Levenberg proposed to damp the 
absolute value of δm, minimizing ( ) ( ) T

L QE Eδ λ= +m δm δm δm ,  which is done by the following 
iterative scheme:                                                        
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The condition number of system (6) can be controlled by λ, since if the JTJ matrix has any 
negative eigenvalues, the stabilization factor λ must be greater than the absolute value of the 
smallest eigenvalue of this matrix in order to guarantee that (JTJ+ λI) will be positive definite. 
Calculating the JTJ eigenvalues is not a simple task, especially in problems with many 
parameters, due to this an empirical scheme is usually adopted to control λ at each iteration. In 
these schemes, the value of λ is usually decreased at each iteration by dividing it by a decay rate 
value: λk+1= λk/c, where |c|>1. The problem is that a low value for c can slow down convergence, 
while a high value can make it unstable, and there is no universal criterion for selecting an optimal 
value for this.  The problem of dimensioning the stability factor of the LM method can be treated 
in a mathematically rigorous way according to the principle of the trust region. For this we take 
into account the following results: the value of δm obtained by solving equation (6) minimizes the 
error function E(m) (eq. 2) on the sphere whose radius |δ|2 satisfies |δm |2=|δ|2. It is then possible 
to demonstrate that δm is a decreasing function of λ, since 
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Where uk represents the elements of the vector u=UTJTδd, U is the matrix whose columns are 
the eigenvectors of JTJ and γk represents the eigenvalues of this same matrix; Marquadt (1963), 
Pujol (2007). Thus, λ can be used naturally to control the radius of the trust region in the following 
way: let r be the ratio between the true decay of the error function and the decay predicted by the 
quadratic approximation: r=∆E/∆EQ, where δE=E(m+δm)-E(m) and δEQ= EQ(δm)-E(m). The 
central idea is to modify λ at each iteration in order to keep the ratio r within certain limits. For this 
we present the following version of a seismic inversion algorithm using LM with trust region. Given 
m, d, λ and Emin; 

(1) calculate S(m)                     (9)   E2=(∆d2)T∆d2                              E =E2, m= m2             
(2) ∆d=d-S                               (10)  ∆EQ=δmT JTJδm-2∆dTJδm        ∆d=∆d        
(3) E=∆dT∆d                            (11)  ∆E=E2-E                                      S= S2                                    
(4) calculate J(m)                    (12)  r=∆E/∆EQ                                    if r < 1/4 then λ=4λ                                  
(5) solve (JTJ+ λI)δm=JT∆d    (13)  if r < 0 then                                 If r > 3/4 then λ=λ/2                       
(6) m2=m+δm                                        λ=4λ                                 (14)  if E < Emin then stop 
(7) calculate S2(m2)                               return to (5)                             else return to (4) 
(8) ∆d2=d-S2                                                          else 

Note that in this algorithm λ is modified in order to control the size of δm in each iteration, in order 
to meet the trust region criterion. Thus, the LMTR algorithm (Levenberg-Marquadt with trust 
region) arrives at a solution that, in addition to minimizing the data error, will also meet the 
condition of controlling δm, what prevents the final solution from deviating too far from the initial 
model, thus implicitly acting as a regularization. 

Results 
 
For this research, the AVAFWI method was implemented using the LMTR algorithm; Levenberg-
Marquardt with trust region and LMC; conventional Levenberg-Marquardt. For details on the 
calculation of the synthetic seismograms, Jacobian and solution of system (6) the reader is 
referred to (Oliveira et al, 2018). The two versions were then applied to invert the same data and 
the final results, as well as the convergence curves, were subjected to analysis. This test consists 
of the inversion of a marine data. In addition to the LMTR, this test was performed using the LMC 
algorithm with a conservative decay rate to slowly reduce the stability factor over the iterations 
(c=2) and a more aggressive decay rate (c=10) was also tested to try to accelerate convergence. 
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The input data consisted of an inline containing angle gathers with eight traces from 5 to 40 
degrees and five degree spacing. The results of the inversion of an angle gather from this data 
are shown in figure (1). In these figures the results of Vp, Vs and Rho are presented together with 
the initial model (red dashed line) and with the data from a neighboring well filtered to the same 
frequency band of the seismic (black line). The results of the elastic inversion using LMTR and 
using the LMC method with c=2 are shown in figure 1a,b,c and figure1d,c,e respectively. The 
results of the elastic inversion using LMC with c=10 are shown in figure 1g,h,i. Figure 1j and 1k 
shows the real angle gather and the modeled angle gather from the LMTR Vp, Vs and Rho result.  
The three tests were performed using the same initial value for the stability factor (λ=5) and the 
same number of twelve iterations. Figure 2c shows the convergence curves of the LMTR and 
LMC methods with c=2 and c=10. In these, it is possible to observe the behavior of the normalized 
error throughout the iterations. The normalized error EN is the value of the objective function in 
the current iteration divided by the value of this function for the initial model: EN=E(mk)/E(m0). 
Figure 2a shows the density section obtained using LMTR inversion and Figure 2b shows the 
density section obtained using LMC with c=10. 

Conclusions 
For the LMC method, choosing an adequate value for λ and also for c is a critical point for the 
correct convergence in a reasonable number of iterations. Large values for c made the LMC 
algorithm converge quickly to a low value of the error function. However, this early convergence 
ended up arriving at a model that, despite explaining the data well, did not reproduce the values 
of the elastic parameters satisfactorily and generated instability in the final inversion image. This 
problem can be solved by choosing a small value for c. This conservative choice tends to avoid 
these instabilities but at the cost of significantly increasing the number of iterations. The seismic 
inversion problem has a non-unique solution, so one way to restrict the number of possible 
solutions is to use some regularization criterion. It is interesting to note that the trust region method 
ends up playing the role of an implicit regularization in the seismic inversion, since it does not 
allow exaggerated steps, thus preventing the final solution from deviating too far from the initial 
model. LMTR is capable of quickly adjusting an adequate value for the stability factor λ, even if a 
very large or small initial value has been specified for it, what makes it converges in an optimized 
number of steps 

 
Figure 1: LMRC Inversion results: a) Vp, b) Vs and c) density. LMC Inversion results with c=2: d) 
Vp, e) Vs and f) density. LMC Inversion results with c=10: g) Vp, h) Vs and i) density. J) Real 
angle gather k) synthetic angle gather from LMTR inversion. 



 
 
  
 
 

 
 
 

   SBGf Conference Rio’25   |   rio25@sbgf.org.br          p. 5 / 5 
 

 

Figure 2: (a) Density section obtained using LMTR (b) Density section obtained using LMC with 
c=10 (c) Convergence curves for LMTR (blue) and LMC with c=2 (red) and c=10 (green).  
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