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Abstract Summary

Blind deconvolution, i.e., the simultaneous recovery of the seismic wavelet and reflectivity, is a funda-
mental challenge in seismic exploration. We tackle this ill-posed problem by means of a multichannel
blind deconvolution approach assisted by deep learning, where machine learning provides an initial
wavelet estimate. Specifically, we train a deep convolutional network to predict the wavelet from syn-
thetic zero-offset seismic data. This predicted wavelet serves as the starting point for an minimiza-
tion algorithm that alternatingly improves the reflectivity estimate and the wavelet. A well-initialized
wavelet can significantly enhance the inversion process, leading to accurate wavelet and reflectivity
recovery. However, the algorithm may converge to an incorrect solution if the initial estimate is too far
from the true wavelet. We demonstrate that a machine-learning initial wavelet improves the chances
for success. This underscores the critical role of machine learning in generating a reliable wavelet
initialization, ultimately improving the robustness and stability of blind deconvolution.

Introduction

Wavelet processing is a critical component of reflection seismology. Accurate seismic wavelet recov-
ery is crucial, as it directly links recorded seismic data to subsurface geology. Wavelet deconvolution
enhances resolution by whitening the seismic spectrum, enabling traces to exhibit spectral charac-
teristics that are more directly interpretable as reflectivity sequences.

Inspired by Canadas (2002) we propose a wavelet estimation method based on alternating mini-
mization of a bilinear cost function. Given a set of seismic traces, each representing different reflec-
tivity convolved with the same wavelet, the method alternates between estimating the wavelet using
all traces (one-to-many optimization) and estimating the reflectivity for each trace given the wavelet
(one-to-one optimization) (Bhuiyan and Sacchi, 2013). Remarkably, this approach converges reliably
when initialized with a good wavelet approximation. This highlights the importance of a well-chosen
starting point for successful wavelet recovery.

We hypothesize that a neural network trained on a sufficiently large and realistic dataset can
provide a robust initial wavelet estimate. This estimate serves as the initialization for the alternating
minimization framework, enabling recovery of both wavelet and reflectivity.

Alternating multichannel blind deconvolution

Building on the work of Canadas (2002), we formulate blind deconvolution as an alternating mini-
mization problem. As usual, we estimate a single wavelet across all traces, while recovering individ-
ual sparse reflectivity series for each trace. Underlying is the well-established assumption that the
wavelet remains stationary within a given analysis window, whereas reflectivity varies and exhibits
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sparsity. The sparsity assumption allows for a parsimonious representation of seismic traces, model-
ing them as the convolution of a compact, short-duration wavelet with a sparse reflectivity sequence.
Once the wavelet is estimated, any deconvolution technique can recover the reflectivity series, in-
cluding classical methods that, while not explicitly enforcing sparsity, can still produce zero-phase,
frequency-enhanced results.

We minimize the cost function

Ng Mg
T =Y [Wrj = dj13 + Awllw = woll3 + A >[Il (1)
j=1 j=1

where d; (size nq x 1) represents the seismic trace at the j-th spatial position, and r; (size n,. x 1) cor-
responds to the reflectivity sequence. The wavelet w, of length n,,, is embedded in the convolution
matrix W (size ng X n,) with ng = n, + n,, — 1.

The initial wavelet w( ensures convergence to a good solution. Here, we estimate it with a neural
network. We enforce the sparse-reflectivity assumption and introduce two trade-off parameters, \,,
and )., to balance the regularization terms. The optimization proceeds by minimizing J alternately
with respect to r; and w while keeping the other fixed. Thus, our alternating minimization algorithm
consists of two main steps:

1. Multichannel wavelet estimation using a Wiener filter.

2. Sparse reflectivity inversion by solving n, ¢5-¢1 problems via FISTA.
Co:::():'ted

A network to estimate the initial wavelet

Global Average
Pooling 2D

Conventionally, the initial wavelet wq is a zero-phase wavelet with the amplitude
spectrum of the data. We aim to improve wg by means of a deep convolutional
neural network, positioning it closer to the global minimum of the cost function (1),

thus enhancing the convergence of our optimization problem. For this purpose, we A
adopt the Inception architecture (Szegedy et al., 2016) with a preprocessing stage
and a final regression step to align the input and output data with the Inception
network. The resulting network architecture is shown in Figure 1.

The training dataset consists of pairs of zero-offset gathers and wavelets. We
divide the complete set of training pairs into 90% for training and 10% for validation.

Each seismic data set includes 1250 samples in time and 100 traces. To gen-
erate the zero-offset gathers, we convolve realistic geological reflectivity models
obtained from the open-source project of Merrifield et al. (2022) with wavelets with
150 time samples. For this purpose, we create a library of Ricker wavelets, ran-
domly varying the peak frequency between 5 Hz and 25 Hz and the phase rotation
between 0° and 90°.

To stabilize the process, we include an additional term to the traditional mean-
square-error loss function by incorporating the differences of the Fourier ampli-
tudes. This enhancement of the frequency-domain representation of the data led 25%3%0
to improved wavelet estimates. The final cost function is then given by Conv2D

1 & . 2 1 < . 2 Figure 1: Net-
B(©) = - g Iwi = (O)I13 + B> g | Fiwil | 1Fli(@))f 3, (2 Figure 1: Net
where M denotes the number of training examples, w and w are the true and ture-
predicted wavelets, respectively, and 3 is the regularization parameter, set to 0.1. The term | F[]
denotes the amplitude of the Fourier transform. The learnable network weights and biases are
encapsulated in the parameter ©. Using the Adam optimizer, we train the neural network with the
TensorFlow Keras library for 100 epochs, minimizing E(©) with a learning rate of 0.0001.
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Results
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and x denote the true and predicted sig-
nal, respectively. We conducted a series

of experiments to systematically evaluate
various regularization coefficients using a
heuristic approach.

The selection criterion focused on the
accuracy of reconstruction in order to bal-
ance the complexity and performance of the
model. Finally, we set A\, = 0.01 and
A = 0.01 and run 20 iterations to evaluate our algorithm.

Figure 2 shows the inversion results for five wavelets from the
testing data and their amplitude spectra for comparison. The neu-
ral network demonstrates a strong ability to predict a good initial
wavelet, which is then further improved by the multichannel inver-
sion, both regarding the wavelets’ shape and bandwidth.

To further study the dependence of the multichannel inversion
on the initial wavelet and to evaluate the impact of the neural net-
work in obtaining an improved initial wavelet, we conduct two ex-
periments for synthetic test data with a 70° Ricker wavelet (Figure
3a). First, we solve the inverse problem using an initial wavelet
predicted by the neural network (Figure 3b). The inversion result is
depicted in Figure 3c.
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Figure 2: Comparison between the inverted result,
the true wavelet, and the initial wavelet given by the
neural network. Left: Time-domain traces. Right:
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In the second test, for com-
parison, we use a zero-phase
Ricker wavelet with the true fre-
quency content as the initial
wavelet (Figure 3d). In this case,
the inversion result (Figure 3e)
deviates stonger from the true
wavelet (Figure 3a), demonstrat-
ing that the inversion algorithm
achieves the best results when
areasonable initial estimate con-
strains the optimization process.
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—— Seismic trace
—— True reflectivity

With the better starting point pro-
vided by the neural network, the

—— Inversion results obtained by our algorithm
—— Inversion results obtained by L2-regularized problem

inversion achieves a more accu-
rate result.

Figure 4: Comparison between our algorithm and L2-regularized
problem: (a) inversion result for S/N of 100, (b) inversion result for
S/N of 4, and (c) inversion result for S/N of 2.
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Synthetic noisy data

To evaluate the effectiveness of our algorithm in this situation, we introduce white noise at three
different levels to the seismic data, measuring the noise intensity using the signal-to-noise ratio (S/N)
between the power of the clean signal and the power of the additive noise. The seismic data contain
wavelets with in three different phase rotations (0°, 70° and 90°) and 10 different peak frequencies.
We use the same neural network as before without retraining to estimate the initial wavelets. Figure
4 compares the reflectivity inversion result for three seismic experiments with added noise. Panel
(a) shows the results for a trace from the seismic section generated using a Ricker wavelet with a
frequency of 13.91 Hz and zero phase, with an S/N of 100. Panel (b)
shows the corresponding results with a Ricker wavelet of 18.5 Hz
and 90° phase, with an S/N of 4. Finally, panel (c) presents the re- 20
sults for a Ricker wavelet of 17.89 Hz and 90° phase, with an S/N
of only 2. We see that our algorithm produces good results under
varying noise levels and wavelet characteristics, outperforming the 0
L2-regularized procedure in all examples. Finally, Figure 5 summa-
rizes the average accuracy and standard deviation of the wavelet Signal-to-noise
inversion as a function of S/N. We observe good performance in  Figyre 5: Mean and standard
noisy scenarios despite not retraining the neural network. error of the wavelet inversion

accuracy for the noisy data.
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Conclusions

This work presents multichannel blind deconvolution assisted by deep learning. Our approach uses
a deep convolutional neural network to estimate an initial wavelet, which is then used in a bilinear
optimization problem to recover the seismic wavelet and the reflectivity model simultaneously.

The bilinear optimization depends strongly on the initial wavelet. The neural network, well trained
with realistic models, provides versatility that not only accelerates the convergence of the optimization
process but also enhances the stability of the solution. By providing an initial model close to the true
wavelet, the neural network assists the optimization problem, helping the cost function to reach a
minimum that optimizes the solution, thus reducing the risk of converging to suboptimal points.
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