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Abstract  

The Common-Reflection-Point (CRP) method combines a stacking traveltime operator with a 
source-receiver gather on which the stacking is performed. Such a procedure is seen to produce 
cleaner sections in which, most particularly are free from reflection-point-dispersal noise. In this 
paper, the CRP method is reviewed, with new, attractively simple expressions for the CRP 
traveltime operator and source-receiver gather being proposed. We hope that the present 
analysis may motivate a broader use of the CRP method for seismic imaging and processing 
purposes.      

Introduction 
 

Traveltime stacking is a well-recognized processing technique for seismic imaging purposes. As 
such, stacking operators that allow for more reliable and better-quality results are always in high 
demand. One of the main hurdles of stacking operators is reflection point dispersal, leading to 
lack of focusing on reflection points of interest. The CRP method combines a stacking operator 
with a corresponding source-receiver gather upon which the stacking is performed. Roughly 
speaking, CRP is not a new approach, but falling into the broader framework of Offset 
Continuation, designed to transform common-offset sections from one offset to another (see, e.g., 
Perroud et al., 1996; Santos et al., 1997; Coimbra et al., 20013; 2016).  

As seen below, the traveltime stacking operator and source-receiver gather are expressed in the 
the form of analytic multi-parameter functions, with parameter extracted by coherency analysis 
(semblance) directly applied to the input data. For 2D seismic acquisition, a few of such CRP 
expressions are available in the literature, those being applied to several seismic processing 
purposes. Extensions to full 3D data are still a challenging task. Still considering 2D seismic 
sections, attractive, simplified expressions for the CRP traveltime and source-receiver gather 
expressions are here provided. Being derived by elementary results of plane-geometry, our 
expressions coincide and can easily replace those corresponding available counterparts.       

Method 

We consider 2D seismic data acquired on a horizontal plane. For simplicity, we assume 
continuous data, with data points 𝑄 = (𝑚, ℎ, 𝑡) specified by scalar coordinates of midpoint 𝑚, half-

offset ℎ and time 𝑡 coordinates. We consider a given data point 𝑄0 = (𝑚0, ℎ0, 𝑡0), referred as a 
central point supposed to belong to a primary-reflection event from a target depth reflector Σ,  

having 𝑃Σ as the reflection point. Both Σ and 𝑃Σ   are throughout supposed fixed and nonidentified.  

For a given half-offset ℎ ≠ ℎ0, our aim is to find data points 𝑄 = (𝑚, ℎ, 𝑡) that are also primary 
reflections from Σ and moreover share the same reflection point 𝑃Σ. As depicted in Figure 1, we 

consider the simple 2D earth model of a single reflector Σ, overlain by a homogenous medium of 

constant velocity V. Cartesian coordinates are such that the seismic line coincides with the 𝑥-axis.    

CRP ZO-FO traveltime and midpoint: We suppose that our central point is a zero-offset (ZO) 
point 𝑄𝑍𝑂 = (𝑚𝑍𝑂 , 0, 𝑡𝑍𝑂), supposed to be a zero-offset (ZO). As above indicated, for a given half-

offset ℎ ≠ 0, our aim is to find a corresponding finite-offset (FO) data point 𝑄 = (𝑚, ℎ, 𝑡), that is 

also a primary-reflection point from Σ and moreover shares 𝑃Σ as reflection point.  Under those 
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circumstances, the traveltime  𝑡 = 𝑡(𝑚, ℎ) along the ray 𝒔𝑃Σ𝒓 is exactly given by the double-
square-root (DSR) equation  

                                 𝑡 =
1

2
(𝑡𝑠 + 𝑡𝑟) ,                                                                                             (1a) 

         𝑡𝑠 = √𝑡𝑍𝑂 + 𝑎𝑍𝑂(Δ𝑚𝑍𝑂 − ℎ)2 + 4ℎ2/𝑉2,        𝑡𝑠 = √𝑡𝑍𝑂 + 𝑎𝑍𝑂(Δ𝑚𝑍𝑂 − ℎ)2 + 4ℎ2/𝑉2,           (1b) 

where Δ𝑚𝑍𝑂 = 𝑚 − 𝑚𝑍𝑂 is midpoint dislocation and, as indicated, 𝑉 is the constant velocity of the 

overburden. Finally, 𝑎𝑍𝑂 is the (horizontal) midpoint slope 𝑡 = 𝑡(𝑚, ℎ) evaluated at 𝑚𝑍𝑂, 

                𝑎𝑍𝑂 = (
𝜕𝑡

𝜕𝑚
) (𝑚0, 0) =

2 sin 𝛼𝑍𝑂

𝑉
.                                                                                 (2) 

                        Figure 1: 2D model for the ZO-FO CRP situation  

Derivation of CRP traveltime operator: From Figure 1, we verify that  

                           𝒔𝑃Σ
̅̅ ̅̅ ̅ = 𝑉𝑡𝑠,            𝑃Σ𝒓̅̅ ̅̅ ̅ = 𝑉𝑡𝑟 ,              𝑃Σ𝒓̅̅ ̅̅ ̅ = 𝑉𝑡𝑟  ,                                                                                     (3a)                         

                          𝒎0𝑃Σ
̅̅ ̅̅ ̅̅ ̅ =

𝑉 𝑡𝑍𝑂

2
,       𝒔𝒎0̅̅ ̅̅ ̅̅ = ℎ − Δ𝑚𝑍𝑂 ,         𝒎𝑍𝑂𝒓̅̅ ̅̅ ̅̅ ̅̅ = ℎ + Δ𝑚𝑍𝑂.                                                         (3b) 

Application of the law of cosines to the triangles 𝒔𝑃Σ𝒎0 and 𝒎0𝑃Σ𝒓, allow us to write 

𝑉2𝑡𝑠
2 = (

𝑉 𝑡𝑍𝑂

2
)

2

+ (ℎ − Δ𝑚𝑍𝑂)2 − 2 (
𝑉 𝑡𝑍𝑂

2
) (ℎ − Δ𝑚𝑍𝑂) sin 𝛼𝑍𝑂,                                                (4a) 

𝑉2𝑡𝑟
2 = (

𝑉 𝑡𝑍𝑂

2
)

2

+ (ℎ + Δ𝑚𝑍𝑂)2 + 2 (
𝑉 𝑡𝑍𝑂

2
) (ℎ + Δ𝑚𝑍𝑂) sin 𝛼𝑍𝑂,                                                    (4b)  

Application of the bisection theorem to the triangle 𝒔𝑃Σ𝒓 produces, after some algebraic 
manipulations the expressions 

    𝑡𝑟 = (
ℎ+Δ𝑚𝑍𝑂

ℎ−Δ𝑚𝑍𝑂
) 𝑡𝑠, from which we obtain  𝑡𝑟 = (

ℎ−Δ𝑚𝑍𝑂

2ℎ
) 𝑡 and 𝑡𝑠 = (

ℎ+Δ𝑚𝑍𝑂

2ℎ
) 𝑡.                           (5) 
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Multiplying equations (4a) and (4b) by ℎ + Δ𝑚𝑍𝑂 and ℎ − Δ𝑚𝑍𝑂, respectively followed by 
summation of and further rearrangement, the sought-for CRP traveltime can be written as 

                                    𝑡2 =
4ℎ2

𝑉2
+

2𝑡𝑍𝑂
2 ℎ2

ℎ2−(Δ𝑚𝑍𝑂)2
 .                                                          (7)   

Derivation of CRP midpoint: To obtain the CRP midpoint expression, we use equations (4a) 

and (4b), however multiplying the first by (ℎ + Δ𝑚𝑍𝑂)2 and the second by (ℎ − Δ𝑚𝑍𝑂)2, followed 
by subtraction. We find                 

                               𝑚 = 𝑚𝑍𝑂 +
2𝑎𝑍𝑂ℎ2

𝑡𝑍𝑂+√𝑡𝑍𝑂
2 +4𝑎𝑍𝑂

2 ℎ2
 .                                           (8)  

Substitution of the above into equation (5), leads to the CRP traveltime alternative expression 

                                        𝑡𝑛
2 =

𝑡𝑍𝑂

2
(𝑡𝑍𝑂 + √𝑡𝑍𝑂

2 + 4𝑎𝑍𝑂
2 ℎ2).                                                    (9)                        

Midpoint slope continuation: For our purposes, we will also need the midpoint-slope 
continuation equation   

                             𝑎 = (
𝜕𝑡

𝜕𝑚
) (𝑚, ℎ) = (

𝑡𝑛
2

𝑡𝑍𝑂 𝑡
) 𝑎𝑍𝑂 ,                                                                   (10)                                

which relates the FO and ZO midpoint slopes 𝑎 and  𝑎𝑍𝑂. Equation (10) can be obtained by 

differentiation of equation (5) with respect to midpoint.  

CRP FO-FO traveltime and midpoint: We are now ready to generalize expressions (7-9) to 
the case where of an FO central point 𝑄0 = (𝑚0, ℎ0, 𝑡0), (ℎ0 ≠ 0). As before, 𝑄0 is assumed to be 

a primary-reflection data point from Σ  having 𝑃Σ as reflection point. For a given half offset 

ℎ ≠ ℎ0, the CRP problem is to find the midpoint and traveltime pairs (𝑚ℎ, 𝑡ℎ) and such that 𝑄ℎ =

(𝑚ℎ, ℎ, 𝑡ℎ), is a primary reflection data point from Σ with reflection point 𝑃Σ. For convenience, 

we set V0 to denote the velocity of the homogeneous overburden of  Σ. Under conceptual 
consideration of the ZO central data point 𝑄𝑍𝑂 = (𝒎𝑍𝑂 , 0, 𝑡𝑍𝑂), the midpoint slope continuation 

(10) can be seen to relate 𝑎0 and 𝑎ℎ (midpoint slopes associated with 𝑄0 and 𝑄ℎ) with 𝑎𝑍𝑂 

(corresponding midpoint slope associated with 𝑄𝑍𝑂). With obvious notations, we can write   

         𝑎𝑍𝑂 = (
𝑡𝑍𝑂 𝑡0

𝑡𝑛0
2 ) 𝑎0  = (

𝑡𝑍𝑂 𝑡ℎ

𝑡𝑛ℎ
2 ) 𝑎ℎ ,     ( with    𝑡𝑛0

2 = 𝑡0
2 −

4ℎ2

𝑉0
2    and    𝑡𝑛ℎ

2 = 𝑡ℎ
2 −

4ℎ2

𝑉0
2 ).           (11)                                      

Substituting into equation (8) and (9), we obtain 

         𝑡𝑛0
2 = (

𝑡𝑍𝑂
2

2𝑡𝑛0
2 ) (𝑡𝑛0

2 + √𝑡𝑛0
4 + 4𝑡0

2𝑎0
2ℎ0

2) ,    and    𝑡𝑛ℎ
2 = (

𝑡𝑍𝑂
2

2𝑡𝑛0
2 ) (𝑡𝑛0

2 + √𝑡𝑛0
4 + 4𝑡0

2𝑎0
2ℎ2).         (12)  

        𝑚0 = 𝑚𝑍𝑂 +
2𝑡0𝑎0ℎ

𝑡𝑛0
2 +√𝑡𝑛0

4 +4𝑡0
2𝑎0

2ℎ2
    and    𝑚ℎ = 𝑚𝑍𝑂 +

2𝑡0𝑎0ℎ

𝑡𝑛0
2 +√𝑡𝑛0

4 +4𝑡0
2𝑎0

2ℎ2
,            (13)  

Taking into account the relations   

                𝑡𝑛ℎ
2 =  𝑡𝑛0

2 (
𝑡𝑛ℎ

2

𝑡𝑛0
2 )     and      𝑚ℎ − 𝑚0 =  (𝑚ℎ − 𝑚𝑍𝑂) − (𝑚0 − 𝑚𝑍𝑂),      (14) 
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we obtain our final expressions for the CRP traveltime and midpoint, namely  

                             𝑡ℎ
2 =

4ℎ2

𝑉0
2 + 𝑡𝑛0

2 [
𝑡𝑛0

2 +√𝑡𝑛0
4 +4𝑡ℎ

2𝑎0
2ℎ2

𝑡𝑛0
2 +√𝑡𝑛0

4 +4𝑡0
2𝑎0

2ℎ0
2
].                                           (15) 

                   𝑚ℎ = 𝑚0 + (
2𝑡0𝑎0ℎ

𝑡𝑛0
2 +√𝑡𝑛0

4 +4𝑡0
2𝑎0

2ℎ2
−

2𝑡0𝑎0𝑎0ℎ0

𝑡𝑛0
2 +√𝑡𝑛0

4 +4𝑡0
2𝑎0

2ℎ0
2
 ).                        (16) 

The CRP traveltime and midpoint above coincide with the ones available in the literature (see, 
e.g., Coimbra et al. (2016), Perroud et al. (1996) and Santos et al. (1997).  

 

Conclusions  

The CRP method aims to produce stacked sections which primary reflections are significantly 
enhanced. Those sections and free from reflection-point dispersion noise. CRP stacking relies, 
not only on traveltime operator, but also on dedicated source-receiver pairs designed for single 
reflection point illumination. In this way, reflection-point dispersal is very much attenuated. In 
this paper a new version of the expressions of CRP travelime and midpoint is presented besides 
being attractively simple, have a more straightforward intuitive derivation. We hope that such 
good properties may contribute to a better understanding of the CRP method and motivate its 
use for a variety of seismic processing and imaging purposes.   
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