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Abstract

The Common-Reflection-Point (CRP) method combines a stacking traveltime operator with a
source-receiver gather on which the stacking is performed. Such a procedure is seen to produce
cleaner sections in which, most particularly are free from reflection-point-dispersal noise. In this
paper, the CRP method is reviewed, with new, attractively simple expressions for the CRP
traveltime operator and source-receiver gather being proposed. We hope that the present
analysis may motivate a broader use of the CRP method for seismic imaging and processing
purposes.

Introduction

Traveltime stacking is a well-recognized processing technique for seismic imaging purposes. As
such, stacking operators that allow for more reliable and better-quality results are always in high
demand. One of the main hurdles of stacking operators is reflection point dispersal, leading to
lack of focusing on reflection points of interest. The CRP method combines a stacking operator
with a corresponding source-receiver gather upon which the stacking is performed. Roughly
speaking, CRP is not a new approach, but falling into the broader framework of Offset
Continuation, designed to transform common-offset sections from one offset to another (see, e.g.,
Perroud et al., 1996; Santos et al., 1997; Coimbra et al., 20013; 2016).

As seen below, the traveltime stacking operator and source-receiver gather are expressed in the
the form of analytic multi-parameter functions, with parameter extracted by coherency analysis
(semblance) directly applied to the input data. For 2D seismic acquisition, a few of such CRP
expressions are available in the literature, those being applied to several seismic processing
purposes. Extensions to full 3D data are still a challenging task. Still considering 2D seismic
sections, attractive, simplified expressions for the CRP traveltime and source-receiver gather
expressions are here provided. Being derived by elementary results of plane-geometry, our
expressions coincide and can easily replace those corresponding available counterparts.

Method

We consider 2D seismic data acquired on a horizontal plane. For simplicity, we assume
continuous data, with data points Q = (m, h, t) specified by scalar coordinates of midpoint m, half-
offset h and time t coordinates. We consider a given data point Q, = (in, h, t,), referred as a
central point supposed to belong to a primary-reflection event from a target depth reflector %,
having Py, as the reflection point. Both X and P5; are throughout supposed fixed and nonidentified.

For a given half-offset h # h,, our aim is to find data points Q = (m, h,t) that are also primary
reflections from £ and moreover share the same reflection point P;. As depicted in Figure 1, we
consider the simple 2D earth model of a single reflector X, overlain by a homogenous medium of
constant velocity V. Cartesian coordinates are such that the seismic line coincides with the x-axis.

CRP ZO-FO traveltime and midpoint: We suppose that our central point is a zero-offset (ZO)
point Qo = (30, 0,t5,), supposed to be a zero-offset (ZO). As above indicated, for a given half-
offset h # 0, our aim is to find a corresponding finite-offset (FO) data point Q = (m, i, t), that is
also a primary-reflection point from X and moreover shares Py as reflection point. Under those

SBGf Conference Rio’25 | rio25@sbgf.org.br p.1/4



4C SBGf GConference

* 1s-20 nov | Ri0'25

circumstances, the traveltime t = t(m,h) along the ray sPsr is exactly given by the double-
square-root (DSR) equation

t=-(t+1t), (1a)

ts =+/tzo + azo(Amgzp — W)2 + 4h2/V2,  to = [tz + azo(Amye — h)? + 4h2/V2, (1b)

where Amy, = m — my, is midpoint dislocation and, as indicated, V is the constant velocity of the
overburden. Finally, a,, is the (horizontal) midpoint slope t = t(m, h) evaluated at my,,

2sinazp

azo = (;_1:1) (Mo, 0) = ——. ()

Figure 1: 2D model for the ZO-FO CRP situation

Derivation of CRP traveltime operator: From Figure 1, we verify that

ﬁ =Vts, W =Vt,, W =Vt (3a)

mop): = v ;ZO’ smo = h - Amzo y mzor = h + Amzo. (Sb)

Application of the law of cosines to the triangles sPsm, and m,Psr, allow us to write
2
V22 = (F22) 4 (h— Amgo)? — 2(722) (h — mgo) sin azo, (4a)

2
V2?2 = (”TZO) + (h+ Amyp)? +2 (Vtz—zo) (h + Amyp) sinagy, (4b)

Application of the bisection theorem to the triangle sPyr produces, after some algebraic
manipulations the expressions

h+A . . h—A h+A
t, = (hJ_'A:;Z) t;, from which we obtain t, = ( ZZIZO) tandtg = ( z;anO) t. (5)
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Multiplying equations (4a) and (4b) by h+ Amg,, and h — Amy,,, respectively followed by
summation of and further rearrangement, the sought-for CRP traveltime can be written as

4h? 2tZoh?

2 =2 2ol
vz hZ2—(Amgzp)? )

(7)
Derivation of CRP midpoint: To obtain the CRP midpoint expression, we use equations (4a)

and (4b), however multiplying the first by (h + Am,,)? and the second by (h — Amy,)?, followed
by subtraction. We find

2
m=my, +—2zol" (8)

tzo+ /t§o+4a§0h2

Substitution of the above into equation (5), leads to the CRP traveltime alternative expression
t2 =22ty +[t2, + 4aZ,h2). 9)

Midpoint slope continuation: For our purposes, we will also need the midpoint-slope
continuation equation

a=(35) amh = (25) az, (10)

which relates the FO and ZO midpoint slopes a and azo. Equation (10) can be obtained by
differentiation of equation (5) with respect to midpoint.

CRP FO-FO traveltime and midpoint: We are now ready to generalize expressions (7-9) to
the case where of an FO central point Q, = (1, hy, ty), (hy # 0). As before, Q, is assumed to be
a primary-reflection data point from £ having Ps as reflection point. For a given half offset

h # h,, the CRP problem is to find the midpoint and traveltime pairs (m,, t,, and such that @, =

——(my, h, ty,), is a primary reflection data point from X with reflection point Py. For convenience,

we set V, to denote the velocity of the homogeneous overburden of X. Under conceptual
consideration of the ZO central data point Q,, = (my, 0, t;,), the midpoint slope continuation
(10) can be seen to relate a, and a;, (midpoint slopes associated with Q, and Q) with a,,
(corresponding midpoint slope associated with Q,,). With obvious notations, we can write

2 2
oo = (a0 = (B2)an (win =i =35 wna o =i=35). a0

tZ
ng np 0 0

Substituting into equation (8) and (9), we obtain

tZ t2
th, = (thfz,) (t,zlo + /t;‘;o + 4t§a§h§>, and t7 = <th,2;> (t,%o + /t;to + 4t§a§h2). (12)

Ztoaoh

2t0a0h

Mo = Myo + and my = Myzo + ) (13)
tho+ |tho+4tsash? t2,+ [th, +4tiadh?
Taking into account the relations
2 _ 42 (b _ 14
by, = o\ 72 and mu —my = (M —Mg) — (Mg —Myp),  (14)
no
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we obtain our final expressions for the CRP traveltime and midpoint, namely

4 2.2
an? tn0+ /tn0+4tha0h2‘
n

=2+ (15)

0
0 thot tn0 +4t2a3h

Ztoaoh Ztoaoaoho
ot /t;‘lo+4t§ 2h2 ot /t;ﬁo+4t§a§h§

The CRP traveltime and midpoint above coincide with the ones available in the literature (see,
e.g., Coimbra et al. (2016), Perroud et al. (1996) and Santos et al. (1997).

mp =mg + (16)

Conclusions

The CRP method aims to produce stacked sections which primary reflections are significantly
enhanced. Those sections and free from reflection-point dispersion noise. CRP stacking relies,
not only on traveltime operator, but also on dedicated source-receiver pairs designed for single
reflection point illumination. In this way, reflection-point dispersal is very much attenuated. In
this paper a new version of the expressions of CRP travelime and midpoint is presented besides
being attractively simple, have a more straightforward intuitive derivation. We hope that such
good properties may contribute to a better understanding of the CRP method and motivate its
use for a variety of seismic processing and imaging purposes.
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