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Abstract

Seismic modeling in the frequency domain relies heavily on the Helmholtz equation; however, solv-
ing the resulting linear systems, especially at high frequencies, presents formidable computational
challenges. This study investigates the application of the Variational Quantum Eigensolver (VQE), a
hybrid quantum-classical algorithm, to solve the one-dimensional Helmholtz equation. By reformulat-
ing the problem as an eigenvalue problem, we encode the discretized operator into a parameterized
quantum circuit using the EfficientSU2 ansatz with CX entangling gates. The Hamiltonian is de-
composed into Pauli terms and optimized using the L-BFGS-B algorithm. Simulations with 2—4 qubits
demonstrate convergence to solutions closely approximating the analytical result. While this study
focuses on a simplified one-dimensional case using Noisy Intermediate-Scale Quantum (NISQ) de-
vices, it establishes the feasibility of applying quantum algorithms to Helmholtz-based seismic mod-
eling.

Introduction

The Helmholtz equation plays a fundamental role in seismic applications, where it is used to simulate
wavefields in the frequency domain and serves as the foundation for algorithms such as migration
and inversion (Claerbout, 1985). However, solving it remains computationally demanding due to the
large size of discretized models and the increased difficulty of handling high-frequency components,
which lead to challenging linear systems. In light of recent advances in quantum computing, which
has shown potential in solving problems in linear regression, optimization, number factoring, and
unstructured database search, this study explores the use of the Variational Quantum Eigensolver
(VQE) (Peruzzo et al., 2014), a hybrid quantum-classical algorithm designed for Noisy Intermediate-
Scale Quantum (NISQ) devices (Preskill, 2018), to address the Helmholtz equation in a simplified
one-dimensional setting.

We reformulate the Helmholtz equation as an eigenvalue problem and encode it into a quantum
circuit, using parameterized gates to approximate the system’s eigenstates and eigenvalues (Liu
et al., 2021). The approach is evaluated through numerical simulations and a critical assessment of
its performance, focusing on aspects such as ansatz selection and convergence behavior. This work
represents an initial step toward the application of quantum computing in wave-based simulations,
addressing a simplified one-dimensional scenario. While not intended to solve large-scale problems,
the results demonstrate the feasibility of quantum approaches and open new avenues for research
in seismic modeling and its applications.

Theory

The One-Dimensional Helmholtz equation

The one-dimensional Helmholtz equation is given by

Uge (T, W) + kzu(x,w) = —f(z,w), (1)
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where u(x) is the wavefield in the frequency domain, & is the wavenumber, w is the angular fre-
quency, and f(z,w) = 0(z — x5)A(w) represents the amplitude of the Fourier transform of the
source wavelet injected at position zg. We consider a spatial domain L discretized into N uniformly
spaced grid points with spacing Az, such that x; = iAxz fori =0,..., N — 1. A classical approach
for approximating the solution is the finite-difference method, which replaces derivatives with discrete
approximations. In this study, the second derivative is approximated using a centered finite-difference
stencil, leading to a discretized version of the Helmholtz equation. Rearranging terms yields a tridi-
agonal linear system of the form Au = b, where the impedance matrix A contains the discretized
differential operator, and the right-hand side vector b incorporates the source term. The accuracy
of the solution improves with finer grid resolution, though the computational cost increases accord-
ingly. It is important to note that, for our test case, we considered homogeneous Dirichlet boundary
conditions, i.e., u(0) = u(L) = 0, which allow for the computation of an analytical solution.

Overview of the Variational Quantum Eigensolver (VQE)

The VQE is a hybrid algorithm developed to estimate the ground state energy of a quantum system,
described by a Hermitian operator known as the Hamiltonian, H. It leverages the variational principle
of quantum mechanics, which states that for any normalized quantum state |¢(9)), the expectation
value of the Hamiltonian satisfies E(0) = (v(0)| H |¢(6)) > Ey, where Ej is the true energy of the
ground state. The VQE algorithm minimizes this expectation value with respect to a set of variational
parameters 60 to approximate the ground state and its corresponding energy. This algorithm consists
of several essential components that work together to estimate the ground state energy of a quantum
system.

The process begins with the Hamiltonian encoding, where the system’s Hamiltonian H is ex-
pressed as a sum of tensor products of Pauli operators, H = Zj cj P;, where each P; represents a
tensor product of Pauli matrices (I, X, Y, Z) acting on different qubits, and each coefficient c; € R.
This decomposition is critical because quantum computers can efficiently evaluate expectation val-
ues only when the operators are written in this form. An ansatz is then selected, which is a pa-
rameterized quantum state |¢(0)), created by applying a quantum circuit U(6) to an initial state,
typically the all-zero state |0)®", resulting in |1)(8)) = U(0)|0). The ansatz circuit typically includes
layers of parameterized single-qubit rotations and entangling gates. Its structure directly impacts the
expressiveness and efficiency of the algorithm. Common ansatz choices include hardware-efficient
designs, the Unitary Coupled Cluster (UCC) method for quantum chemistry, and problem-specific
constructions (de Jesus et al., 2025).

Following state preparation, the expectation values of each term in the Hamiltonian are measured
individually on a quantum device. The total energy is given by E(6) = >_; ¢; (¢¥(0)| P; [¢(9)). Due to
the probabilistic nature of quantum measurement, this step requires multiple repetitions to estimate
the energy accurately. Finally, a classical optimization routine is used to adjust the parameters 6 in
order to minimize the estimated energy. The goal is to find optimal parameters 6* = arg miny E(6).
Both gradient-free methods, such as COBYLA and Nelder-Mead, and gradient-based methods, such
as L-BFGS-B and Adam, are commonly used, depending on the characteristics of the optimization
landscape.

The optimization is terminated once the energy change between iterations falls below a prede-
fined threshold or the maximum number of iterations is reached. The final parameters 6* define the
approximate ground state, and the corresponding energy E(0*) serves as the estimate of the lowest
eigenvalue of H. However, several computational challenges must be considered. Deeper quantum
circuits can represent more complex states, but may suffer from increased noise and optimization dif-
ficulty. Another challenge is the barren blateau (McClean et al., 2018), when the energy landscape
may become flat in high-dimensional spaces, making gradients vanish and optimization inefficient.
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Additionally, quantum measurements are inherently probabilistic and introduce sampling noise. To
mitigate these statistical errors, it is necessary to employ sufficient sampling strategies or apply error
mitigation techniques.

Results

We analyze the VQE approach for solving the one-dimensional Helmholtz equation as an eigenvalue
problem. In this setting, the spatial domain is defined as . = 1.0 m and discretized according to
the number of qubits g, such that the number of grid points is N = 29. We consider a wavenumber
k = 5.0m~! and assume a real-valued system in which the right-hand side vector b is defined
by a sinusoidal source term f(x) = —sin(27x). To solve the problem using VQE, we adopt the
EfficientSU2 ansatz available in the Qiskit library. For the classical optimization within the VQE
loop, we employ the L-BFGS-B algorithm, which provided the best approximation results among
several tested methods. The VQE solution is compared against the analytical solution, i.e., u(z) =
sin(27z)/(k? — 47?), and the numerical solution obtained using the linalg.solve function from
the NumPy library, which solves the linear system resulting from the discretized Helmholtz equation
(equivalent to the quantum formulation but solved classically). The accuracy is assessed using the
root mean square error (RMSE), taking the analytical solution as reference.

Table 1 presents a comparison of the errors obtained from the numerical solution and the VQE for
different numbers of qubits. For 2 and 3 qubits, both methods yield similar and relatively low errors,
with VQE slightly outperforming the classical method at 3 qubits. However, for 4 qubits, the VQE
error increases, and this trend continues at 5 qubits, where both methods show significantly larger
errors. These results indicate that the performance of VQE is sensitive to system size and emphasize
the need for improved ansatz design and optimization strategies as the number of qubits increases.
Figure 1 illustrates the solution of the one-dimensional Helmholtz equation using three approaches:
analytical, numerical, and VQE. For small quantum systems, specifically those involving up to 3
qubits, the VQE solution shows reasonable agreement with the analytical result. This degradation in
performance is primarily attributed to a phenomenon known as the barren plateau. In this regime,
the gradients of the cost function vanish exponentially with the system size, making the optimization
landscape flat and hindering the training of variational quantum circuits. Although limited in scalability,
these results demonstrate that quantum algorithms can be applied to differential equations in low-
dimensional cases, serving as a proof of concept for future developments.

Table 1: Comparison of errors for numerical and VQE solutions.

Parameter Grid points Numerical VQE

2 qubits 4 0.250 0.250
3 qubits 8 0.212 0.192
4 qubits 16 0.216 0.268
5 qubits 32 2.688 2.792

Conclusions

This study presented a novel application of the VQE to approximate the solution of the one-dimensional
Helmholtz equation, a fundamental problem in seismic modeling. By reformulating the problem as
an eigenvalue problem and implementing it within a hybrid quantum-classical framework, we demon-
strated the feasibility of using quantum computing tools, specifically the VQE algorithm with the
EfficientSU2 ansatz, for Helmholtz-based modeling. The results obtained for systems with 2 to 4
qubits showed good agreement with the analytical solution, indicating that quantum algorithms can
capture the essential behavior of physical systems. Importantly, this work also highlights some of the
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limitations of the current generation of quantum algorithms, such as increased errors for larger qubit
counts and sensitivity to the choice of ansatz and optimizer.

Despite these challenges, this initial exploration reinforces the potential of quantum computing in
geophysical applications and opens up new research directions. These include investigating more
expressive circuit architectures, improving optimization strategies, and scaling to higher-dimensional
seismic problems. As quantum hardware continues to develop, these methods may serve as viable
alternatives or complements to classical numerical approaches in seismic modeling.
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Figure 1: Comparison of the solutions to the one-dimensional Helmholtz equation using (a) 2, (b) 3,
(c) 4, and (d) 5 qubits.
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