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Abstract Summary

We propose a bound-normalization compression technique for the stiffness matrix in 3D general
anisotropic media. This approach enables the storage of elastic coefficients using reduced memory
resources. The benefits are significant, with memory usage reduced by up to 30% on the device side,
while introducing only minimal errors. Seismograms generated using the compressed data remain
nearly identical to those obtained without compression, confirming the effectiveness of the method.

Introduction

Three-dimensional seismic modeling in generally anisotropic media is computationally expensive due
to the complexity of stress-strain relationships, particularly when media rotations are included. Okaya
and McEuvilly (2003) explored the effects of axis rotations on the stiffness matrix and demonstrated
that, in fully anisotropic media, all 21 independent components of the stiffness tensor may be non-zero.
To build the stiffness tensor we are using the weak-anisotropy formulated to orthorhombic symmetry
with rotation (Thomsen, 1986; Tsvankin, 1997). The rotated finite difference staggered grid is a
commonly used strategy for solving the wave equation in generally anisotropic media (Saenger et al.,
2000; Zhang and Schmitt, 2025). Consequently, the objective of this study is to compress the stiffness
matrix to reduce memory usage and evaluate the impact on seismogram accuracy and computational
cost. We employ a comparative analysis and compute three different correlation coefficients to assess
the similarity between data generated with and without compression. In terms of performance we
compare results with isotropic case (Graves, 1996) without data compression memory usage.

Methodology

The stiffness matrix, representing the complete set of elastic parameters, is expressed as C;;,a 6 x 6
symmetric matrix with 21 independent coefficients in Voigt notation, associated with resistance to
volumetric and shear deformation volumes. The compression strategy is simple, as described in the
following equations

cy, =10"7Cry, 1)
Cpy —min(C7,)
max(C} ;) —min(C4 ;) |}’

max(C}Jb) :Crlnin(C'},/) )) )
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Initially, the compressed volumes are loaded, and the maximum and minimum values of each
normalized stiffness component C ; are retrieved. This pre-processing step is essential to avoid
costly computations within the seismic modeling kernel. Then, we multiply all the 21 independent
volumes of the stiffness matrix by 107 (eq. 1), where C ; are the rescaled elements. After that, we
define boundary values between a = 1 and b = 216 (eq. 2). This bound normalization is applied to
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scale the stiffness matrix into the range of a 16-bit unsigned short integer, requiring only 2 bytes per
element, as opposed to 4 bytes when using the float data type. To perform wave field propagation, the
physical properties must first be restored to their original scale. This is achieved by applying Equation
3 prior to each computation step. To evaluate the errors and computational overhead introduced by
the proposed transformation, we conduct two three-dimensional experiments with their respective
models, as shown in Figure 1. The first test involves a homogeneous model with a fully populated
stiffness matrix (eq. 4), defined over a domain of 3 km in each spatial direction (see Fig. 1a). The
homogeneous coefficients are described below

1.29996426  0.58337507 0.58579036 —0.00001265 —0.00170636 0.00000893
1.29999100 0.58578803 0.00085316 0.00002527 0.00000893

Crr= 1.00003750 0.00070482 —0.00143497 —0.00000155 % 109 (4)
1J = 0.27563484 0.00000311 —0.00086582 '
0.27563011 0.00043288
0.35830117

The second test considers a layered model exhibiting vertical transverse isotropy, characterized
by the parameters ¢, § and ~, as defined by Thomsen (1986). The model spans dimensions of
(z,y,2) = (5,5,2) km. Figure 1 presents the elastic properties for each layer, 100 meters in thickness,
displayed in well logs for velocity, density, and anisotropic parameters. The two models are discretized
with a regular grid spacing of 12.5 m. We employ a classical absorbing boundary condition with
a thickness of 50 samples, over 1.5 propagation seconds, using a time increment of 1 ms. The
acquisition geometry for each experiment consists of a single source. In the homogeneous model, the
source is positioned at the center of the domain, while in the layered model, it is located at the center
of the surface. In the homogeneous experiment, 40 receivers are deployed at a depth of 200 meters,
spaced 50 meters apart. In the layered model, 100 receivers are used with the same aspects.
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Figure 1: Model to simulate the compression experiment where source is the black dot and receivers
are gray dots. (a) The homogeneous model with 21 non-zero components with its stiffness matrix
defined by equation 4. (b) The layered model defined by properties described in Thomsen (1986). (c)
and (d) are well logs for velocities, density and anisotropic parameters.

Results

Results are organized in terms of seismograms and their corresponding differences, benchmark
tables, and a summary of correlation coefficients. The experiments were conducted on a system
equipped with an Intel Core i7-12700 CPU and a NVIDIA RTX 3060 GPU. Figure 2 illustrates the
outcomes of the first experiment. As shown in Fig. 2(c), the difference between the compressed
and standard methodologies is negligible. Observable differences emerge only when the amplitude
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threshold is reduced to 0.001% of the original seismogram’s maximum amplitude. Additionally, Table 1
reveals a memory reduction of 18% on the host and 32% on the device achieved through the proposed
compression methodology, that brings the memory usage closer to the simplified isotropic case.
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Figure 2: Seismograms and their corresponding differences obtained from the homogeneous model
experiment. (a) The compressed and (b) the no compressed stiffness result. (c) The difference
between them at the same scale and (d) the difference rescaled to 0.001% of the original scale.

Table 1: Benchmarks for homogeneous model.

Time [s]

1.0
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1

Anisotropic Isotropic
no Compression | Compression | Simplified formulation
Runtime 60.2 s 55.4s 36.5s
RAM Usage 2308 MB 1877 MB 1382 MB
GPU Usage 5234 MB 3538 MB 2246 MB

r 0.20

Amplitude

- —0.05

- —0.10

r—0.15

- —-0.20
25 50 75 100

Trace index

(a)

Time [s]

o
o
=1

25
Trace index

(b)

50 75 100

- —0.05

- —0.10

- —0.15

- —0.20

0.0

Time [s]
o

Amplitude

-
o

15

1 25
Trace index

(©

50

0.0

- 0.05 05

4

o

3
Amplitude

Time [s]

- —0.05

g
S

- —0.10

r—0.15

- -0.20 1.5
75 100 1

25
Trace index

(d)

50 75

Amplitude

Figure 3: Seismograms and their corresponding differences obtained from the layered model experi-
ment. (a) The compressed and (b) the no compressed stiffness result. (c) The difference between
them at the same scale and (d) the difference rescaled to 0.001% of the original scale.

Figure 3 presents the results of the second experiment. As shown in Fig. 3(c), the difference
between the compressed and standard methodologies is minimal. Observable discrepancies only
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appear when the amplitude threshold is reduced to 0.001% of the original seismogram’s maximum
amplitude. Furthermore, Table 2 reveals a memory reduction of 20% on the host and 30% on the
device, achieved through the proposed compression methodology, bringing memory usage closer to
that of the simplified isotropic case formulation without compression.

Table 2: Benchmarks for layered model.

Anisotropic Isotropic
no Compression | Compression | Simplified formulation
Runtime 122.5s 110.8 s 76.5s
RAM Usage 4032 MB 3220 MB 2255 MB
GPU Usage 8460 MB 5858 MB 3710 MB

Table 3 presents popular correlation strategies: Pearson, Spearman, and Kendall, correlation coef-
ficients, used to assess the similarity between seismograms generated with and without compression
in both experiments. A correlation coefficient closer to one indicates higher similarity. All metrics
confirm a strong agreement, demonstrating that the compressed seismograms are nearly identical to
those obtained without compression.

Table 3: Comparison of correlation coefficients for homogeneous and layered model experiment.

Homogeneous Model | Layered Model
Pearson 0.9999 0.99999
Spearman 0.9998 0.99997
Kendall 0.9996 0.99976

Conclusions

We developed a methodology to compress the elastic tensor in generally anisotropic seismic modeling.
This approach significantly reduces memory usage, by up to 30% on the device, while maintaining the
seismograms accuracy. The resulting errors are minimal, with seismograms showing near-identical
responses to those computed using uncompressed properties, as confirmed by high correlation
coefficients. This compression strategy enables more efficient use of computational resources without
sacrificing the fidelity of the physical modeling.
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