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Abstract Summary

Velocity model building (VMB) should comply with the physics involved in wave propagation and
honor the location of the recording surface in which we extract the information. Thus, we propose
using a generative model to predict velocity from shallow to deep. The shallow distribution act as
priors to predict the deep, and in our implementation, with using the seismic image and the well
information as guide. An application on offshore data from North west Australia demonstrated the
versatility of this approach in predicinting an accurate velocity model. With the generative nature
of the process, we can also quantify the uncertainty, which was well in agreement with what we
expected. We will share more examples in the presentation of this work.

Introduction

Seismic data are recorded on the Earth’s surface, yet the goal of seismic imaging is to resolve
structures deep within the subsurface, requiring accurate velocity model building (VMB) to account for
the complex travel paths of seismic waves (Yilmaz, 2001). A common strategy for velocity estimation
is the top-down approach (layer stripping), where the model is constructed layer by layer from shallow
to deep, guided by surface seismic data, well information, and stacking velocities (Biondi, 2006). A
key tool in this process is "downward continuation”, which extrapolates recorded wavefields from the
surface to deeper levels using an estimated velocity model, in order to reduce the effects of velocity
heterogeneity on imaging and improve reflector positioning (Claerbout, 1985). Thus, the natural
progression of VMB should have a top-to-down succession. Nevertheless, most machine learning
models for estimating the subsurface using surface recorded data ignore this fundamental fact (Taufik
et al., 2024; Wang et al., 2024), as they borrow their models from image processing applications in
computer vision that do not have this physical reality in its inverse formulation.

Recent advances in generative modeling have demonstrated the potential to learn and sample
from complex distributions, making these tools invaluable for seismic applications, such as regu-
larizing full waveform inversion (FWI, e.g., Taufik et al., 2024). Generative models, like Generative
Adversarial Networks (GANs) and diffusion models, have emerged as state-of-the-art techniques,
leveraging convolutional neural networks (CNNSs) to generate high-quality samples (e.g., Wang et al.,
2024). Despite their success, these methods often overlook the natural progression of velocity model
building from surface recorded seismic data from shallow to deep. This oversight can limit the prac-
tical utility of these models in seismic workflows that inherently depend on spatial hierarchies and
acquisition geometries. Thus, we need a generative framework that align with the spatially hierarchi-
cal nature of seismic velocity information.

Inspired by the success of Generative Pre-trained Transformer (GPT)-based models in natural
language processing, VelocityGPT (Harsuko et al., 2024) was introduced as a generative framework
tailored to seismic velocity models. By adopting an autoregressive approach, VelocityGPT predicts
deeper subsurface layers conditioned on previously generated layers, mimicking the progression

SBGf Conference Rio’25 | rio25@sbgf.org.br p. 1/4



< SBGf Conference

18-20 nov | Ri0"25

of traditional model-building practices. The original VelocityGPT demonstrated promising results,
including the ability to incorporate velocity model classes during training, enabling conditional sam-
pling for diverse geological scenarios (Harsuko et al., 2024).The other approach is a Diffusion model
trained to estimate the velocity for a certain depth using the known velocity of the shallower depth as
a condition. We will share applications based on both model in the top-down VMB process.

Theory

VelocityGPT was introduced as a two-stage framework: 1). VQ-VAE training to encode velocity
models into discrete latent codes and 2). GPT training on latent codes to model the underlying
distribution. The VQ-VAE training employs the following objective function (Van Den Oord et al.,
2017):

Lvq-vage = logp(z|za(x)) +[[sglze(2)] — el3 + Bl|ze(z) — sgle]l]3, (1)

where z represents the input image, z. is the encoder, z; is the decoder, e denotes the discrete
embedding space, and sg refers to the stop gradient operator, which acts as an identity function dur-
ing the forward pass and zeros out gradients during the backward pass. Each term in the objective
serves a specific purpose: the reconstruction loss (first term) optimizes the encoder and decoder to
accurately reconstruct the input; the embedding loss (second term) adjusts the embedding dictio-
nary; and the commitment loss (third term), ensures consistency between the encoder output and
the embedding space. One of the caveats of using a multi-term objective function is the balancing of
each term.

VelocityGPT promotes adding of latent codes of an image at the corresponding location of the
latent codes of the velocity model as a condition to impose the structural information. The patch-
based generation of VelocityGPT allows for a lower training cost and freedom to extend to any velocity
model size in the inference. However, for the latter, the network might lose the spatial context when
the model size is quite large, and thereby, the generated samples might deteriorate in quality and
continuity. Therefore, to preserve spatial coherence and maintain depth-wise continuity, we add a
global positional encoding at the latent code level, which imposes information on the depth location
in the actual domain after converting patches into latent codes. Specifically, consider a velocity model
M € R"™. We patchify the velocity model into overlapping patches of size p x p with a stride s,
which are then converted into latent codes. The depth of each latent code is denoted as d;, where
d; corresponds to the relative depth of the latent code in the transformed latent code domain.

Data and training

We aim to train the VelocityGPT on synthetic velocity models and apply it to the target field data;
thus, we design a workflow that ensures that the synthetic velocity models are representative of the
subsurface structures in the field. The models are guided by well information, providing critical con-
straints on the velocity distributions and layering patterns. Initially, we generate 1D compressional
wave velocity (V}) profiles using velocity value ranges guided from well field measurements. These
profiles are then laterally extended to form 2D layered velocity models, establishing a baseline struc-
ture. To introduce geological complexity, we apply random elastic transforms that simulate realistic
subsurface features such as folding and intrusions, creating models that reflect the heterogeneity of
the Earth. We created 2,048 samples of 2D V], models using this approach. This choice of RTM
velocity was used to demonstrate the versatility of the framework.

We trained two VQ-VAE networks: one responsible for encoding the velocity models and the other
for the corresponding images. The two networks share a similar architecture, which is composed of
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two-layered encoder and two-layered decoder with 32 filters for each layer. Regarding the codebook
size, we use 240 for both the velocities and the images. These VQ-VAEs are trained using an Adam
optimizer with a batch size (bs) of 1024 and a learning rate (Ir) of 4e-3 on a single NVIDIA A100 GPU
each. Subsequently, we trained a GPT network to model the conditional distribution of the velocity
models using well, depth position, and RTM images as the conditions. The depth position allows
the network to focus on the distribution of velocity values and structures within a depth range, as
velocity often increases with depth. The GPT network is configured as follows: 16 layers, 64 hidden
dimensions, and 8 attention heads. We use an Adam optimizer with a bs = 128 and a Ir = 1e-3 to
train the network.

Results

Figure 1, top left, shows the top part of an FWI result of the field data (Figure 1, bottom left) used
as input to the algorithm. However, the initial shallow segment could be derived from other sources
of information, and it also could be limited to the water layer, if needed, as the well will help guide
the velocity. Like in the training, we perform RTM using a smooth version of the velocity derived from
the well (i.e., homogeneous laterally) for conditional generation purposes, taking into account that
the training images were derived in a similar fashion. Figure 1, bottom row shows the generated
samples with a well as an additional condition. This extra information provides constraints of the
layering as well as the velocity variation with depth, which is reflected in the generated samples that
appear closer to the FWI result, yet higher resolution thanks to the well information. We also achieve
a high correlation between the generated samples and the FWI result, even at locations away from
the well. The variance between the generated samples can provide a measure of uncertainty of
the introduced process. Figure 2 compares the FWI results with the mean of the generated models
using the same image and well condition (100 of them). The standard deviation computed from these
models provides a map of uncertainty which increases away from the well and as we go deep in the
model, which is expected.
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Figure 1: Input to the algorithm (top left), which is the top part of an FWI result (bottom left). Con-

ditional generation results using: RTM and position (top row) and RTM, position, and well (bottom
row).

Conclusions

VelocityGPT advances generative sampling for velocity model building by integrating RTM, global po-
sitional encoding, and well constraints to produce realistic and spatially coherent models. A simpler
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Figure 2: An FWI obtained velocity model (top left). The mean of 100 realization from the Veloci-
tyGPT with well and image condition (bottom left). The standard deviation correpsonding to the 100
realizations (top eight). The used RTM image (bottom right).

quantizer and the use of linear attention mechanism secured computational efficiency while main-
taining quality, even for large models. The generated samples exhibit strong agreement with FWI
results, demonstrating their potential as robust priors for inversion workflows.
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