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Abstract  

Our objective in this work is to introduce a geometry-based ray-tracing method and demonstrate 
its application in characterizing of subsurface models. This algorithm is designed to minimize the 
number of operations required to determine the input and output points of ray paths in layered 
homogeneous geological models with intricate geometry. Implemented in C++, the algorithm 
utilizes an unstructured mesh of tetrahedral elements, which are widely used in structural finite 
element analysis. Preliminary results from modeling compressional wave propagation in a 2.5D 
nonhomogeneous and isotropic geological model have shown a significant capability for handling 
complex geological structures, particularly in modeling multiple reflected waves.  

Introduction 
 
The propagation of seismic waves in complex 3D heterogeneous structures is a complicated 
process. Analytical solutions of the elastodynamic equation for such media are not yet know. 
However, the most common approaches to investigating this process rely on methods based on 
direct numerical solutions of the elastodynamic equation, such as grid-point methods as well as 
approximate high-frequency asymptotic methods (Cerveny V., 2002). Based on an asymptotic 
solution of the elastodynamic equation, more commonly known as ray-series methods, 
asymptotic methods are only approximate. These methods can be applied to compute not only 
travel times but also the ray amplitudes, synthetic seismograms, and particle ground motions.  

The seismic ray method can be divided into two fundamental parts: kinematic and dynamic. The 
kinematic part calculates seismic rays as characteristics of the eikonal equation, a nonlinear first-
order differential equation for travel time, describing compressional or shear waves propagating 
in sufficiently smooth isotropic media.  Meanwhile, the dynamic part consists of the evaluation of 
the vectorial values of amplitudes of the displacement vector. The propagation of seismic waves 
in inhomogeneous media would be incomplete without considering the interaction of these waves 
with geological layers interfaces. The exact process of reflection, transmission or refraction of 
plane waves at the interface requires a deep physical analysis and has only a local character. An 
extensive discussion on the calculation of rays associated to reflection, transmission and 
anomalous waves was presented in Cerveny V., 2002.  

In the literature, many numerical methods exist to solve the ray-tracing system. However, the 
objective this work is to introduce an efficient computational inexpensive geometry-based ray-
tracing method (GbRT) and demonstrate its application in the characterization of subsurface 
models. In the next section, we present this method, developed to compute ray paths in layered 
homogeneous geological models with significant heterogeneity. 

A Geometry-Based Ray Tracing Method  

In the kinematic ray-series approximation, the travel time of a high-frequency wave propagating 

through homogeneous media with velocity 𝑉 is described by the eikonal equation, (∇𝑇)2 =  𝒑 ⋅ 𝒑, 
where 𝒑 is the slowness vector (inverse of wave velocity 𝑉) and 𝑇(𝒙) represents the arrival time 

of a wavefront at a point 𝒙 (Podvin and Lecomte, 1991; Schuster G. T., 2017). In more general 

cases, such as heterogeneous media, where the differential operator ∇ is not necessarily well-
defined, a direct solution does not exist. For complex geological structures, layered models are 
commonly built with arbitrarily oriented interfaces that bound homogeneous layers.  
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In this context, the ray associated with the front of an elementary wave propagating through a 
homogeneous layer follows a straight line. This simplification enables the representation of the 
ray tracing method as a tree data structure. Each ray corresponds to a tree node containing 
information such as travel time, source and virtual receiver location at interfaces, unit direction 
vector, and elementary wave type. The travel time is determined by multiplying the path arc length 
by the inverse of the wave velocity. Each branch associated with the node represents a new ray 
originating from a Snell’s law analysis at the interface.  

The core aspect of this geometric perspective on the ray-tracing method is determining the final 
position of the ray at the lower interface. If a regular three-dimensional voxel grid of a layered 
seismic model is used, the Real-Line Voxelization algorithm, presented by Aleksandrov, Slatanov 
and Heslop (2021), describes the ray path as a sequence of input-output points at voxel faces 
This algorithm is characterized by minimizing the number of operations required to obtain the 
output points. If each interface is discretized in a regular triangular mesh, the Real-Line 
Voxelization algorithm is complemented by the Line-Interface Intersection algorithm (Möller and 
Trumbore,1997) to calculate the final intersection point. The drawback of this approach arises in 
rough interfaces. The regular voxel discretization is not necessarily the best option if the model 
contains an intrusion between layers, which is common in basalt and satl subsurface structures. 
To address this, we propose extending the Line-Interface Intersection algorithm to a non-uniform 
adaptive mesh that adjusts the mesh, focusing finer meshes in areas where it is necessary, and 
coarser meshes elsewhere, according to the users’ choice.     

Considering an unstructured mesh composed of tetrahedron elements (Figure 1). If each 
geometric element in the mesh has triangle faces, let a ray Ω, with origin in 𝑶, arc-length 𝑠 and 

normalized direction 𝒅 defined as,  

𝑹(𝑠) = 𝑶 + 𝑠 𝒅,      (1) 

and a triangle defined with its vertices 𝑽1, 𝑽2 and 𝑽3. The ray/triangle intersection problem is 

completely solved if the point (𝑢, 𝑣) on the surface is uniquely determined such that  

𝑶 + 𝑠 𝒅 = (1 − 𝑢 − 𝑣)𝑽𝟏 + 𝑽𝟐 + 𝑽𝟑     (2) 

  

Figure 1: A simple regular three-dimensional tetrahedral grid of a seismic model with a single 
structural interface (left). Notation used in the line-triangle intersection scheme (right).     

Denoting 𝑬1 = 𝑽2 − 𝑽1, 𝑬2 = 𝑽3 − 𝑽1 and 𝑻 = 𝑶 − 𝑽1, the solution to Equation (2) is obtained by  

(
𝑠
𝑢
𝑣

) =  
1

(𝒅×𝐄2)⋅𝑬1
( 

(𝑻 × 𝑬1) ⋅ 𝑬2

(𝒅 × 𝑬2) ⋅ 𝑻
(𝑻 × 𝑬1) ⋅ 𝒅

)  =  
1

𝑷⋅𝑬1
(

𝑸 ⋅ 𝑬2

𝑷 ⋅ 𝑻
𝑸 ⋅ 𝒅

) ,           (3) 
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where 𝑷 = 𝒅 × 𝑬𝟐 and 𝑸 = 𝑻 × 𝑬1.  One advantage of this method is that the plane equation need 
not be computed nor be stored, which can amount to significant memory savings. To ensure 
numerical stability, the test that eliminates parallel rays must compare 𝒏 ⋅ 𝒅 to a small interval 

around of machine precision, with a properly adjust of -value. This algorithm is complemented 
by the approach presented by Aleksandrov, Slatanov and Heslop (2021), which considers the 
new geometrical element and describes the ray path as a sequence of points at tetrahedral faces.  

A part of the algorithm requires an unstructured mesh composed of tetrahedral elements. This 
kind of mesh has a considerable benefit in modeling intricate geological structures. To illustrate 
this benefit, Figure 2 shows a structural model representing the interfaces of a geological 
formation composed by low velocity layers (LVs) within thick (1 km) basalt layer, as well as sills 
and dykes. A zoom-in of an unstructured tetrahedral mesh of model composed to approximately 
350K elements is presented in the right side of the figure. The irregular geometry of the 
unstructured mesh and the variable cell sizes-particularly fine near principal interfaces and 
coarser in the interior layers-accelerate the geometry ray-tracing algorithm compared to the Real-
Line Voxelization algorithm. 

 

Figure 2:  Vertical view of a 2.5D structural model (left) and detailed view of the unstructured 
tetrahedral mesh (right). 

To demonstrate the potential of the method, the algorithm was implemented in C++, and the next 
section presents the results obtained using the described approach to simulate multiple reflected 
wave propagation in a simplified basalt model.  

Results 

One of the main goals in implementing of the GbRT method is the ability to model and characterize 
multiple reflected waves from thin layers. These seismic waves are events that have been 
reflected more than once and can make it more difficult to identify deeper seismic events in real 
seismic data. Intrabasalt low-velocity (vesicular) layers are characterized by a lower seismic 
velocity compared to the surrounding material (massive basalt) and are known for generating a 
series of internal multiples.  

Consider a single-layer homogeneous 2.5D model of basalt with depth 1000𝑚 and extension 
5000𝑚, characterized by an average compressional velocity of 5600 m/s, which includes two flat 

low-velocity zones (𝐿𝑉1 and 𝐿𝑉2) with a velocity 3800 𝑚/𝑠. This model is used to simulate multiple 
reflected waves using the GbRT method described in the previous section. With a single 
compressional source located at the top and center of the model, the ray paths associated with 
direct wave and the multiples generated in 𝐿𝑉1 and 𝐿𝑉2, are showed in the Figure 3.  The  𝐿𝑉1 and 

𝐿𝑉2 layers, measuring 50𝑚 and 25𝑚 in thickness and situated at depths of 250𝑚 and 350𝑚, 
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respectively, have been shown to have the potential to generate multiples waves, as illustrated 
by the ray-path set.   

 

Figure 3: Ray path for a simplified model with two intrabasalt low-velocity (vesicular) layers. The 
red line represents the ray paths associated with multiple reflected waves generated within 𝐿𝑉1 

and 𝐿𝑉2 layers. 

Conclusions 

We present an efficient computationally inexpensive GbRT method to model elementary wave 
propagation in intricate geological structures. Using an unstructured adaptive mesh composed of 
tetrahedral elements, which allows for modeling complex geometries, the algorithm demonstrates 
optimal results in simulating multiple reflective waves within thin intrabasalt low-velocity layers in 
a simplified geological model.   
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