

SBGf Conference

18-20 NOV | Rio'25

Sustainable Geophysics at the Service of Society

In a world of energy diversification and social justice

Submission code: W89R6W074P

See this and other abstracts on our website: <https://home.sbgf.org.br/Pages/resumos.php>

Determination of Magnetic Anomalies for a 3-D Magnetized Body Embedded in a Magnetic Half-Space

**Marcos Martinez Gama Marcos (UFBA), Edson Emanoel Starteri Sampaio Edson (UFBA),
Diego Menezes Novais Diego (UFBA)**

Determination of Magnetic Anomalies for a 3-D Magnetized Body Embedded in a Magnetic Half-Space

Copyright 2025, SBGf - Sociedade Brasileira de Geofísica/Society of Exploration Geophysicist.

This paper was prepared for presentation during the 19th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November 2025. Contents of this paper were reviewed by the Technical Committee of the 19th International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of the Brazilian Geophysical Society is prohibited.

Introduction

Magnetic anomaly modeling is essential for characterizing subsurface bodies, particularly in contexts where direct methods are required for geophysical interpretation. This work proposes a theoretical formulation to determine the magnetic anomalies produced by a three-dimensional magnetized body embedded in a medium with distinct magnetic properties (i.e., a magnetic half-space). The model assumes a constant external magnetic field and employs orthogonal coordinates adapted to the body's geometry to simplify Laplace's equation. Specifically, bipolar and bispherical coordinates are explored as efficient approximations for cylindrical and spherical bodies, respectively.

Method and/or Theory

The methodology of this work generalizes the two-dimensional model proposed by Sampaio (1982) into three dimensions, using the magnetic field \mathbf{B} as the theoretical basis. The boundary conditions ensure the continuity of the scalar magnetic potential and the normal components of the magnetic field across the interfaces of the physical model. The general solution is obtained numerically by determining the coefficients of a linear system, whose resolution enables the characterization of the anomalous magnetic field.

The transition to bispherical coordinates extends the methodology to three-dimensional problems while preserving the harmonic structure of the equations and rigorously applying boundary conditions. This approach guarantees a consistent mathematical formulation suitable for modeling magnetic anomalies generated by magnetized spherical bodies. Theoretical validation is performed through numerical simulations, which demonstrate the efficiency and robustness of the proposed method.

Results and Conclusions

The results show that, even with geometric simplifications, the model accurately reproduces anomalies generated by subsurface bodies with uniform magnetization. The proposed methodology proves promising for identifying magnetic permeability contrasts in diverse geological environments. It can be applied to mineral exploration, geotechnical investigations, and environmental or archaeological studies.