

SBGf Conference

18-20 NOV | Rio'25

Sustainable Geophysics at the Service of Society

In a world of energy diversification and social justice

Submission code: WPZ594RAV4

See this and other abstracts on our website: <https://home.sbgf.org.br/Pages/resumos.php>

LIBS Spectral Comparison with XRF Assays for Elemental Characterization of Iron Ore Samples

Lucas Frascaroli (Geotek do Brasil), Maria Masella (Geotek do Brasil), Leonardo Soares (Geotek do Brasil), Mateus Martins (Geotek do Brasil), Raphael Prieto (Vale)

LIBS Spectral Comparison with XRF Assays for Elemental Characterization of Iron Ore Samples

Copyright 2025, SBGf - Sociedade Brasileira de Geofísica/Society of Exploration Geophysicist.

This paper was prepared for presentation during the 19th International Congress of the Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 18-20 November 2025. Contents of this paper were reviewed by the Technical Committee of the 19th International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or storage of any part of this paper for commercial purposes without the written consent of the Brazilian Geophysical Society is prohibited.

Introduction

LIBS is a rapid multi-elemental technique supporting mineral exploration, ore characterization, and geometallurgical modelling. The correlation between spectral intensity and elemental concentration requires validation with geochemical reference data to ensure calibration.

Method and/or Theory

This study compares LIBS spectra and X-ray fluorescence (XRF) assays for 76 pressed-pellet samples of friable and compact itabirites and hematites. LIBS spectra were collected in the UV–VIS range and cross-referenced with emission lines from the NIST Atomic Spectra Database. The LIBS is part of the coresampling facility from Geotek at Vale (LEEAP).

Results and Conclusions

Spectral intensities between 200–300 nm and 370–450 nm — linked to Fe and Si — align with the sample's dominant elements. Fe-rich samples showed higher Fe I and Fe II emissions (248 and 259 nm), while Si-rich ones displayed strong Si I signals (288.14 nm). Despite spectral consistency, LIBS-XRF correlations ranged from poor to moderate, likely due to matrix effects, mineralogical variation, and line overlaps. Al and Mn, though less abundant, showed better correlations with XRF ($R^2 = 0.81$ and 0.67, respectively). These findings highlight LIBS as a fast, complementary tool to XRF in mining workflows. Further research is advised to improve Fe and Si quantification, using certified reference materials and broader concentration ranges.