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Abstract Summary

This study explores machine learning techniques for predicting Shear Wave Travel Time (DTS) using
data from the Viking Graben region. Six regression models were tested with robust preprocessing
and hyperparameter tuning via methods like Genetic Algorithm and Bayesian Optimization. The Ran-
dom Forest model achieved the best results (R? = 0.9757), with Bayesian Optimization offering the
best trade-off between accuracy and efficiency. The findings highlight the potential of ML pipelines
for DTS prediction and similar geophysical applications.

Keywords: Shear Wave Travel Time (DTS); Machine Learning; Regression Models; Hyperpa-
rameter Optimization; Random Forest; Bayesian Optimization.

Introduction

Shear Wave Travel Time (DTS) is a key parameter for reservoir characterization and wellbore stability,
as it provides elastic properties derived from sonic logs and helps mitigate drilling risks (Olutoki
et al., 2024; Rajabi et al., 2023). However, direct DTS acquisition is often limited by high costs and
operational constraints.

To address this, Machine Learning (ML) techniques have emerged as effective alternatives for
estimating DTS based on available well log data (Ahmed et al., 2022; Liu et al., 2021; Silveira et al.,
2023). These models can capture complex, nonlinear relationships and improve predictive accuracy,
even with noisy or incomplete datasets.

This study investigates the performance of ML regression algorithms for DTS prediction, empha-
sizing the role of hyperparameter optimization. It also compares different tuning strategies—such as
Genetic Algorithm Optimization, Bayesian methods, and GridSearchCV—in terms of both accuracy
and computational efficiency.

Methodology

This study followed a structured workflow comprising data preprocessing, feature selection, model
training, hyperparameter optimization, and performance evaluation, as outlined in Figure 1.

Ouitlier detection was tested using four algorithms: Local Outlier Factor (LOF), Support Vector
Machine (SVM), Isolation Forest (IF), and Mahalanobis Distance. Among them, Mahalanobis Dis-
tance produced the most consistent and geologically coherent results (Figure 2).
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Figure 1: Flowchart of the methodological steps adopted in this study.
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Figure 2: Comparison of the application of outlier detection before and after for well 25_.10-9 using
Mahalanobis Distance. The GR peaks indicate lithological variations such as shales, clays and
radioactive minerals.
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Six regression algorithms were evaluated: Linear Regression, K-Nearest Neighbors (KNN), Sup-
port Vector Regression (SVR), Multi-Layer Perceptron (MLP), Gradient Boosting Regressor (GBR),
and Random Forest Regressor (RFR) (Breiman, 2001; Mrabet et al., 2022; Segal, 2003). Rather
than detailing the theoretical basis of each model, the focus was placed on their application to DTS
prediction using normalized and filtered well log data.

Model performance was assessed using metrics such as Mean Squared Error (MSE), Coeffi-
cient of Determination (R?), Root Mean Squared Error (RMSE), and Mean Absolute Percentage
Error (MAPE). The impact of different hyperparameter optimization techniques—Genetic Algorithm
Optimization (GAO), Bayesian Optimization, Optuna, and GridSearchCV—was also systematically
compared across the top-performing models.

Results

The performance evaluation focused on three key aspects: predictive accuracy of the models, the
impact of hyperparameter tuning, and the effectiveness of different optimization strategies.

Among the models tested, RFR consistently outperformed others, achieving the lowest initial
error (MSE = 0.0123; R? = 0.9757), followed by KNN and GBR. Linear models lagged significantly,
reinforcing the superiority of nonlinear approaches for DTS modeling.

Hyperparameter tuning led to measurable improvements across all models. The GAO improved
both RFR and GBR performance, while gains for KNN were smaller. Notably, Bayesian Optimization
emerged as the most efficient technique overall—achieving high accuracy while reducing computa-
tional cost, especially relevant for models with multiple hyperparameters and large search spaces.
For instance, RFR reached an MSE of 0.01182 and KNN obtained the lowest MAPE (2.92%) using
this method.

Table 1 summarizes the predictive metrics before and after tuning for the top-performing models.
The results confirm the effectiveness of combining nonlinear models with advanced optimization.

Table 1: Predictive performance (MSE, R?, RMSE, MAPE) of the top three models before and after
hyperparameter optimization.

Model Technique MSE R? RMSE MAPE (%)
RFR Original 0.0123  0.9757  0.1108 3.36
GAO | 0.0118  0.9765  0.1088 3.13
Bayesian 0.01182 0.97654 0.10873 3.18
Optuna 0.01197 0.97625 0.10940 3.19
GridSearchCV  0.01186 0.97647 0.10889 3.16
KNN Original 0.0135 0.9732 0.1162 3.30
GAO | 0.0132  0.9738  0.1150 3.20
Bayesian 0.01311 0.97399 0.11448 2.92
Optuna 0.01365 0.97292 0.11683 3.06
GridSearchCV  0.01311 0.97399 0.11448 2.92
GBR Original 0.0138 0.9726 0.1174 3.30
GAO | 0.0122  0.9758  0.1105 3.44
Bayesian 0.01311 0.97399 0.11448 2.92
Optuna 0.01248 0.97523 0.11173 3.14
GridSearchCV  0.01213 0.97593 0.11014 3.25
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Conclusions

This study confirmed the superior performance of nonlinear regression models—particularly RFR,
GBR, and KNN—over traditional linear approaches for predicting DTS. RFR achieved the highest
accuracy, with an initial MSE of 0.0123 and R? = 0.9757, which improved further after hyperparam-
eter optimization.

Among the tuning strategies tested, Bayesian Optimization offered the best trade-off between ac-
curacy and computational efficiency, proving especially effective in scenarios involving large search
spaces and multiple hyperparameters. The GAO also produced consistent improvements, particu-
larly for ensemble-based models like RFR and GBR.

The proposed pipeline integrates robust preprocessing, model selection, and optimization stages,
showing strong potential for generalization beyond DTS. Its modular structure allows for adaptation
to other geophysical targets, such as velocity, porosity, or seismic-derived attributes, and to datasets
with broader lithological variability or from different basins.

As future work, this approach could be extended to include more diverse geological settings, in-
corporate temporal sequences or well logs from larger fields, and explore deep learning architectures
(e.g., 1D-CNNs) to enhance pattern recognition in complex subsurface data.
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