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Abstract Summary 

Digital signal processing techniques, such as the Fast Fourier Transform (FFT), are extensively 

employed in geophysics for spectral analysis. However, their application to paleoclimatic time 
series may present limitations, as these methods typically assume stationarity in variance, an 
assumption that does not always hold true. To address this issue, Evolutionary Spectral Analysis 
(ESA) offers a framework for visualizing the temporal evolution of spectral components, thereby 
revealing quasi-periodic behaviors associated with astronomical cycles, such as Earth's orbital 
eccentricity. Nonetheless, the presence of outliers, data points with anomalously high amplitudes, 
can introduce spectral artifacts, including spectral leakage, which may lead to misinterpretations. 
In this context, the present study proposes a methodology grounded in machine learning to 
classify ESA maps as a preliminary step toward the detection of such artifacts. An unsupervised 
learning approach was adopted, employing the k-means clustering algorithm in conjunction with 
the Silhouette Coefficient (SC) to evaluate cluster quality. The results indicate that a five-cluster 
configuration provides the most meaningful separation among the spectral patterns analyzed. 
Although some degree of overlap between clusters was observed, the proposed method proved 
effective in identifying dominant spectral behaviors, highlighting its potential as a supporting tool 
for improving the reliability of paleoclimatic interpretations. Future developments may focus on 
enhancing classification accuracy through the incorporation of additional spectral descriptors or 
the adoption of semi-supervised learning models, as more labeled data become available. 

Introduction 
 
In geophysics, digital signal processing techniques are commonly employed for data analysis and 
interpretation. The Fast Fourier Transform (FFT), for example, is extensively used to convert 
signals from the time domain to the frequency domain, enabling the identification of dominant 
spectral components, a technique widely applied in seismology and magnetometry. 

In paleoclimatic time series, however, the amplitude of spectral peaks can vary over time. 
Conventional power spectral density methods, such as the FFT, Periodogram, Lomb-Scargle, 
and Multitaper, provide estimates of the average variance density as a function of frequency, 
considering the entire time series. These methods, however, assume the series is stationary with 
respect to variance, which is not always the case (Weedon, 2003). When the objective is to 
identify persistent periodicities associated with specific wavelengths over time, such assumptions 
may lead to misinterpretations. 

The evolutionary spectrogram or Evolutionary Spectral Analysis (ESA) is a graphical technique 
that enables the visualization of the temporal evolution of spectral signals within a time series 
(Fazio, 2025; Santos, 2023; Leandro, 2022). This method applies a spectral estimator to a moving 
(sliding) time window and represents power as a function of frequency (x-axis) and time (y-axis). 
Within the context of cyclostratigraphy, spectrograms generated via ESA reveal the complex 
quasi-periodic behavior associated with Earth’s orbital eccentricity. For instance, they show that 
spectral components around the 100-thousand-year band often exhibit intervals of reduced power 
compared to the more stable 405-thousand-year eccentricity cycle, particularly near 37.5 million 
years ago (Kodama, 2015). 
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However, the presence of outliers, data points with amplitudes significantly higher than 
surrounding values, can introduce spectral artifacts within the windows that include these 
anomalies. A common artifact is spectral leakage, which may generate spurious frequency 
components. If not properly identified and mitigated, these artifacts can be misinterpreted as 
genuine paleoclimatic cycles (Percival and Walden, 1993).  

This work presents a methodology for classifying ESA graphs as a preliminary step toward artifact 
detection. It is expected that this pre-classification will support the creation of a database that 
enables the use of traditional supervised classification methods by simplifying the labeling of data. 

Method 

To enable the automatic identification of such artifacts, previously a methodology grounded in 
artificial intelligence and machine learning was developed, with the objective of flagging 
spectrogram regions where astronomical signals are deemed unreliable for interpretation. Given 
the geological nature of the data and the lack of reliable labels across a sufficiently broad dataset, 
a fully supervised learning approach was not feasible. Instead, the process was initiated using an 
unsupervised learning strategy, aimed at organizing and characterizing recurring spectral 
patterns. 

 

Figure 1: Visual labeling of ESA maps into four groups, considering the visibility and width of the 
signals across the chart. 

The first step involved preprocessing the ESA maps by limiting the maximum frequency to the 
threshold corresponding to 99% of the total energy in the global spectral analysis. This criterion 
was adopted to remove high-frequency components that are potentially spurious. Due to the wide 
variability in the observed spectral patterns, particularly in terms of the width and clarity of spectral 
features, the k-means clustering algorithm was employed for the classification of the maps 
(Hartigan, 1979), based on the energy distribution across ten predefined frequency bands: 0–2%, 
2–4%, 4–6%, 6–10%, 10–15%, 15–25%, 25–35%, 35–50%, 50–75%, and 75–100%. To guide 
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the interpretation of the classifications performed by k-means, we visually labeled the ESA maps 
into four groups, considering the visibility and width of the signals throughout the graph (Fig. 1). 

The number of clusters (k) is defined prior to each iteration of the k-means algorithm, which 
returns nine (09) scatter plots of the clustering results, showing the magnitude of the first energy 
band (0–2%) in relation to the other nine. The minimum number of clusters was set to two (02) 
and incremented gradually until a decline in the average silhouette score was observed, around 
seven (07). The optimal number of clusters for this dataset was determined using the Silhouette 
Coefficient (SC) (Rousseeuw, 1987). 

Results 
 
The SC indicated that five clusters (k = 5) provided the most meaningful separation among the 
types of ESA patterns (Fig. 2). The group with the greatest width and highest visibility (labeled as 
“4” in Fig. 1) was clearly separated from the rest. For both four and five clusters, group “1” was 
also well separated. However, groups 3 and 4 showed significant overlap, lacking clearly 
distinguishable features that would allow for effective separation. 

 

Figure 2: Result of data clustering considering two clusters (k = 2) to seven clusters (k = 7) each 
accompanied by the corresponding silhouette coefficient (SC) value. 

Conclusions 

The application of unsupervised machine learning, specifically k-means clustering, to 
Evolutionary Spectral Analysis (ESA) maps represents a promising approach for the preliminary 
classification of graphs into groups with similar structures. The use of the Silhouette Coefficient 
(SC) ensured the selection of an optimal number of clusters, enhancing the interpretability and 
robustness of the results. Although some overlap remains between certain spectral groups, the 
methodology successfully identified and categorized dominant spectral behaviors, demonstrating 
its potential as a support tool for improving the reliability of interpretations. Future work may refine 
this classification by incorporating additional spectral descriptors or transitioning to semi-
supervised models as more labeled data become available. 
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